3,147 research outputs found

    Influence of frictions on gait optimization of a biped robot with an anthropomorphic knee

    Get PDF
    This paper presents the energy consumption of a biped robot with a new modelled structure of knees which is called rolling knee (RK). The dynamic model, the actuators and the friction coefficients of the gear box are known. The optimal energy consumption can also be calculated. The first part of the paper is to validate the new kinematic knee on a biped robot by comparing the energy consumption during a walking step of the identical biped but with revolute joint knees. The cyclic gait is given by a succession of Single Support Phase (SSP) followed by an impact. The gait trajectories are parameterized by cubic spline functions. The energetic criterion is minimized through optimization while using the simplex algorithm and Lagrange penalty functions to meet the constraints of stability and deflection of the mobile foot. An analysis of the friction coefficients is done by simulation to compare the human characteristics to the robot with RK. The simulation results show an energy consumption reduction through the biped with rolling knee configuration. The influence of friction coefficients shows the energy consumption of biped robot is close to that of the human.ANR-09-SEGI-011-R2A2; French National Research Agenc

    Optimal Walking of an Underactuated Planar Biped with Segmented Torso

    Get PDF
    Recently, underactuated bipeds with pointed feet have been studied to achieve dynamic and energy efficient robot walking patterns. However, these studies usually simplify a robot torso as one link, which is different from a human torsos containing 33 vertebrae. In this paper, therefore, we study the optimal walking of a 6-link planar biped with a segmented torso derived from its 5-link counterpart while ensuring that two models are equivalent when the additional torso joint is locked. For the walking, we suppose that each step is composed of a single support phase and an instantaneous double support phase, and two phases are connected by a plastic impact mapping. In addition, the controlled outputs named symmetry outputs capable of generating exponentially stable orbits using hybrid zero dynamics, are adopted to improve physical interpretation. The desired outputs are parameterized by B´ezier functions, with 5-link robot having 16 parameters to optimize and 6-link robot having 19 parameters. According to our energy criterion, the segmented torso structure may reduce energy consumption up to 8% in bipedal walking, and the maximum energy saving is achieved at high walking speeds, while leaving the criteria at low walking speeds remain similar for both robots.China CSC LCF

    Natural ZMP trajectories for biped robot reference generation

    Get PDF
    The control of a biped humanoid is a challenging task due to the hard-to-stabilize dynamics. Walking reference trajectory generation is a key problem. Linear Inverted Pendulum Model (LIPM) and Zero Moment Point (ZMP) Criterion based approaches in stable walking reference generation are reported. In these methods, generally, the ZMP reference during a stepping motion is kept fixed in the middle of the supporting foot sole. This kind of reference generation lacks naturalness, in that, the ZMP in the human walk does not stay fixed, but it moves forward under the supporting foot. This paper proposes a reference generation algorithm based on the LIPM and moving support foot ZMP references. The application of Fourier series approximation simplifies the solution and it generates a smooth ZMP reference. A simple inverse kinematics based joint space controller is used for the tests of the developed reference trajectory through full-dynamics 3D simulation. A 12 DOF biped robot model is used in the simulations. Simulation studies suggest that the moving ZMP references are more energy efficient than the ones with fixed ZMP under the supporting foot. The results are promising for implementations

    Restricted Discrete Invariance and Self-Synchronization For Stable Walking of Bipedal Robots

    Full text link
    Models of bipedal locomotion are hybrid, with a continuous component often generated by a Lagrangian plus actuators, and a discrete component where leg transfer takes place. The discrete component typically consists of a locally embedded co-dimension one submanifold in the continuous state space of the robot, called the switching surface, and a reset map that provides a new initial condition when a solution of the continuous component intersects the switching surface. The aim of this paper is to identify a low-dimensional submanifold of the switching surface, which, when it can be rendered invariant by the closed-loop dynamics, leads to asymptotically stable periodic gaits. The paper begins this process by studying the well-known 3D Linear Inverted Pendulum (LIP) model, where analytical results are much easier to obtain. A key contribution here is the notion of \textit{self-synchronization}, which refers to the periods of the pendular motions in the sagittal and frontal planes tending to a common period. The notion of invariance resulting from the study of the 3D LIP model is then extended to a 9-DOF 3D biped. A numerical study is performed to illustrate that asymptotically stable walking may be obtained.Comment: Conferenc

    Quasi optimal sagittal gait of a biped robot with a new structure of knee joint

    Get PDF
    The design of humanoid robots has been a tricky challenge for several years. Due to the kinematic complexity of human joints, their movements are notoriously difficult to be reproduced by a mechanism. The human knees allow movements including rolling and sliding, and therefore the design of new bioinspired knees is of utmost importance for the reproduction of anthropomorphic walking in the sagittal plane. In this article, the kinematic characteristics of knees were analyzed and a mechanical solution for reproducing them is proposed. The geometrical, kinematic and dynamic models are built together with an impact model for a biped robot with the new knee kinematic. The walking gait is studied as a problem of parametric optimization under constraints. The trajectories of walking are approximated by mathematical functions for a gait composed of single support phases with impacts. Energy criteria allow comparing the robot provided with the new rolling knee mechanism and a robot equipped with revolute knee joints. The results of the optimizations show that the rolling knee brings a decrease of the sthenic criterion. The comparisons of torques are also observed to show the difference of energy distribution between the actuators. For the same actuator selection, these results prove that the robot with rolling knees can walk longer than the robot with revolute joint knees.ANR R2A

    Adaptive, fast walking in a biped robot under neuronal control and learning

    Get PDF
    Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (> 3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks

    Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot

    Get PDF
    This paper presents three feedback controllers that achieve an asymptotically stable, periodic, and fast walking gait for a 3D (spatial) bipedal robot consisting of a torso, two legs, and passive (unactuated) point feet. The contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and 6 actuators. The interest of studying robots with point feet is that the robot's natural dynamics must be explicitly taken into account to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit. This method allows the computations to be carried out on a 2-DOF subsystem of the 8-DOF robot model. The stability of the walking gait under closed-loop control is evaluated with the linearization of the restricted Poincar\'e map of the hybrid zero dynamics. Three strategies are explored. The first strategy consists of imposing a stability condition during the search of a periodic gait by optimization. The second strategy uses an event-based controller. In the third approach, the effect of output selection is discussed and a pertinent choice of outputs is proposed, leading to stabilization without the use of a supplemental event-based controller
    corecore