23 research outputs found

    ON EVALUATION OF MOTION GAITS ENERGY EFFICIENCY WITH A HEXAPOD CRAWLING ROBOT

    Get PDF
    In this work, we are concerning the problem of energy efficient locomotion of a hexapod crawling robot. We are emphasizing a practical verification and deployment on a real walking robot to evaluate relations between the energy consumption, motion speed, and terrain type with a particular motion gait. The tripod, tetrapod, and pentapod motion gaits are considered in the presented evaluation report

    ON TRAVERSABILITY COST EVALUATION FROM PROPRIOCEPTIVE SENSING FOR A CRAWLING ROBOT

    Get PDF
    Traversability characteristics of the robot working environment are crucial in planning an efficient path for a robot operating in rough unstructured areas. In the literature, approaches to wheeled or tracked robots can be found, but a relatively little attention is given to walking multi-legged robots. Moreover, the existing approaches for terrain traversability assessment seem to be focused on gathering key features from a terrain model acquired from range data or camera image and only occasionally supplemented with proprioceptive sensing that expresses the interaction of the robot with the terrain. This paper addresses the problem of traversability cost evaluation based on proprioceptive sensing for a hexapod walking robot while optimizing different criteria. We present several methods of evaluating the robot-terrain interaction that can be used as a cost function for an assessment of the robot motion that can be utilized in high-level path-planning algorithms

    ON TRAVERSABILITY COST EVALUATION FROM PROPRIOCEPTIVE SENSING FOR A CRAWLING ROBOT

    Get PDF

    RHex: A Simple and Highly Mobile Hexapod Robot

    Full text link

    Investigation of energy efficiency of hexapod robot locomotion

    Get PDF
    Disertacijoje nagrinėjamos vaikščiojančių robotų energijos sąnaudų problemos jiems judant lygiu ir nelygiu paviršiumi. Pagrindinis tyrimo objektas yra vaikščiojančio roboto valdymo, aplinkos atpažinimo bei kliūčių išvengimo žinomoje aplinkoje metodas. Energijos sąnaudų minimizavimas leistų praplėsti vaikščiojančių robotų pritaikymą ir veikimo laiką. Pagrindinis darbo tikslas – sukurti energijos sąnaudų minimizavimo metodus vaikščiojantiems robotams ir sukurti aplinkos atpažinimo ir klasifikavimo metodus bei ištirti šešiakojo roboto energijos sąnaudas jiems judant žinomoje aplinkoje. Šie metodai gali būti taikomi vaikščiojantiems daugiakojams robotams. Darbe sprendžiami šie uždaviniai: šešiakojo roboto eisenos parinkimas atsižvelgiant į energijos sąnaudas, paviršiaus kliūčių aptikimo ir perlipimo metodų sudarymas ir jų efektyvumo palyginimas. Taip pat sprendžiami uždaviniai, kurie siejasi su pėdų trajektorijos generavimo metodo kūrimu bei kliūčių dydžio ir tankio įtaka roboto energijos sąnaudoms. Disertaciją sudaro įvadas, trys skyriai, bendrosios išvados, naudotos literatūros ir autoriaus publikacijų disertacijos tema sąrašai. Įvade aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų praktinė reikšmė, ginamieji teiginiai. Įvado pabaigoje pristatomos disertacijos tema autoriaus paskelbtos publikacijos ir pranešimai konferencijose bei disertacijos struktūra. Pirmasis skyrius skirtas literatūros apžvalgai. Jame pateikta mobiliųjų robotų energetinio efektyvumo bei energijos sąnaudų matavimo, skaičiavimo ir optimizavimo metodų analizė. Antrajame skyriuje pateiktas energetiškai efektyvaus judėjimo metodikos sudarymas vaikščiojantiems robotams. Šiame skyriuje pateiktas šešiakojo roboto matematinio ir fizinio modelių sudarymas, nelygaus paviršiaus klasifikavimo modelio sudarymas bei taktilinio kliūčių aptikimo bei perlipimo metodų sudarymas. Skyriaus gale pateikiamos išvados. Trečiajame skyriuje tiriamos energijos sąnaudų priklausomybės nuo roboto eisenos bei judėjimo parametrų, kliūčių aptikimo ir perlipimo tikslumas priklausomai nuo kliūčių skaičiaus roboto kelyje, taip pat kliūčių dydžio ir tankio įtaka roboto energijos sąnaudoms. Disertacijos tema paskelbti 9 straipsniai: keturi – Clarivate Analytics Web of Science duomenų bazės leidiniuose, turinčiuose citavimo rodiklį, trys – Clarivate Analytics Web of Science duomenų bazės „Conference Proceedings“ leidiniuose ir du – kituose recenzuojamuose mokslo leidiniuose. Disertacijos tema perskaityti 7 pranešimai konferencijose Lietuvoje bei kitose šalyse

    Posture control of a low-cost commercially available hexapod robot for uneven terrain locomotion

    Get PDF
    Legged robots hold the advantage on uneven and irregular terrain, where they exhibit superior mobility over other terrestrial, mobile robots. One of the fundamental ingredients in achieving this exceptional mobility on uneven terrain is posture control, also referred to as attitude control. Many approaches to posture control for multi-legged robots have been taken in the literature; however, the majority of this research has been conducted on custom designed platforms, with sophisticated hardware and, often, fully custom software. Commercially available robots hardly feature in research on uneven terrain locomotion of legged robots, despite the significant advantages they pose over custom designed robots, including drastically lower costs, reusability of parts, and reduced development time, giving them the serious potential to be employed as low-cost research and development platforms. Hence, the aim of this study was to design and implement a posture control system on a low-cost, commercially available hexapod robot – the PhantomX MK-II – overcoming the limitations presented by the lower cost hardware and open source software, while still achieving performance comparable to that exhibited by custom designed robots. For the initial controller development, only the case of the robot standing on all six legs was considered, without accounting for walking motion. This Standing Posture Controller made use of the Virtual Model Control (VMC) strategy, along with a simple foot force distribution rule and a direct force control method for each of the legs, the joints of which can only be position controlled (i.e. they do not have torque control capabilities). The Standing Posture Controller was experimentally tested on level and uneven terrain, as well as on a dynamic balance board. Ground truth measurements of the posture during testing exhibited satisfactory performance, which compared favourably to results of similar tests performed on custom designed platforms. Thereafter, the control system was modified for the more general case of walking. The Walking Posture Controller still made use of VMC for the high-level posture control, but the foot force distribution was expanded to also account for a tripod of ground contact legs during walking. Additionally, the foot force control structure was modified to achieve compliance control of the legs during the swing phase, while still providing direct force control during the stance phase, using the same overall control structure, with a simple switching strategy, all without the need for torque control or modification of the motion control system of the legs, resulting in a novel foot force control system for low-cost, legged robots. Experimental testing of the Walking Posture Controller, with ground truth measurements, revealed that it improved the robot’s posture response by a small amount when walking on flat terrain, while on an uneven terrain setup the maximum roll and pitch angle deviations were reduced by up to 28.6% and 28.1%, respectively, as compared to the uncompensated case. In addition to reducing the maximum deviations on uneven terrain, the overall posture response was significantly improved, resulting in a response much closer to that observed on flat terrain, throughout much of the uneven terrain locomotion. Comparing these results to those obtained in similar tests performed with more sophisticated, custom designed robots, it is evident that the Walking Posture Controller exhibits favourable performance, thus fulfilling the aim of this study.Dissertation (MEng)--University of Pretoria, 2018.Mechanical and Aeronautical EngineeringMEngUnrestricte

    An online learning algorithm for adapting leg stiffness and stride angle for efficient quadruped robot trotting

    Get PDF
    Animals adjust their leg stiffness and stride angle in response to changing ground conditions and gait parameters, resulting in improved stability and reduced energy consumption. This paper presents an online learning algorithm that attempts to mimic such animal behavior by maximizing energy efficiency on the fly or equivalently, minimizing the cost of transport of legged robots by adaptively changing the leg stiffness and stride angle while the robot is traversing on grounds with unknown characteristics. The algorithm employs an approximate stochastic gradient method to change the parameters in real-time, and has the following advantages: (1) the algorithm is computationally efficient and suitable for real-time operation; (2) it does not require training; (3) it is model-free, implying that precise modeling of the robot is not required for good performance; and (4) the algorithm is generally applicable and can be easily incorporated into a variety of legged robots with adaptable parameters and gaits beyond those implemented in this paper. Results of exhaustive performance assessment through numerical simulations and experiments on an under-actuated quadruped robot with compliant legs are included in the paper. The robot platform used a pneumatic piston in each leg as a variable, passive compliant element. Performance evaluation using simulations and experiments indicated that the algorithm was capable of converging to near-optimal values of the cost of transport for given operating conditions, terrain properties, and gait characteristics with no prior knowledge of the terrain and gait conditions. The simplicity of the algorithm and its demonstrably improved performance make the approach of this paper an excellent candidate for adaptively controlling tunable parameters of compliant, legged robots

    Adaptive Locomotion: The Cylindabot Robot

    Get PDF
    Adaptive locomotion is an emerging field of robotics due to the complex interaction between the robot and its environment. Hybrid locomotion is where a robot has more than one mode of locomotion and potentially delivers the benefits of both, however, these advantages are often not quantified or applied to new scenarios. The classic approach is to design robots with a high number of degrees of freedom and a complex control system, whereas an intelligent morphology can simplify the problem and maintain capabilities. Cylindabot is designed to be a minimally actuated hybrid robot with strong terrain crossing capabilities. By limiting the number of motors, this reduces the robot's weight and means less reinforcement is needed for the physical frame or drive system. Cylindabot uses different drive directions to transform between using wheels or legs. Cylindabot is able to climb a slope of 32 degrees and a step ratio of 1.43 while only being driven by two motors. A physical prototype and simulation models show that adaptation is optimal for a range of terrain (slopes, steps, ridges and gaps). Cylindabot successfully adapts to a map environment where there are several routes to the target location. These results show that a hybrid robot can increase its terrain capabilities when changing how it moves and that this adaptation can be applied to wider environments. This is an important step to have hybrid robots being deployed to real situations

    Biological, simulation, and robotic studies to discover principles of swimming within granular media

    Get PDF
    The locomotion of organisms whether by running, flying, or swimming is the result of multiple degree-of-freedom nervous and musculoskeletal systems interacting with an environment that often flows and deforms in response to movement. A major challenge in biology is to understand the locomotion of organisms that crawl or burrow within terrestrial substrates like sand, soil, and muddy sediments that display both solid and fluid-like behavior. In such materials, validated theories such as the Navier-Stokes equations for fluids do not exist, and visualization techniques (such as particle image velocimetry in fluids) are nearly nonexistent. In this dissertation we integrated biological experiment, numerical simulation, and a physical robot model to reveal principles of undulatory locomotion in granular media. First, we used high speed x-ray imaging techniques to reveal how a desert dwelling lizard, the sandfish, swims within dry granular media without limb use by propagating a single period sinusoidal traveling wave along its body, resulting in a wave efficiency, the ratio of its average forward speed to wave speed, of approximately 0.5. The wave efficiency was independent of the media preparation (loosely and tightly packed). We compared this observation against two complementary modeling approaches: a numerical model of the sandfish coupled to a discrete particle simulation of the granular medium, and an undulatory robot which was designed to swim within granular media. We used these mechanical models to vary the ratio of undulation amplitude (A) to wavelength (λ) and demonstrated that an optimal condition for sand-swimming exists which results from competition between A and λ. The animal simulation and robot model, predicted that for a single period sinusoidal wave, maximal speed occurs for A/ λ = 0.2, the same kinematics used by the sandfish. Inspired by the tapered head shape of the sandfish lizard, we showed that the lift forces and hence vertical position of the robot as it moves forward within granular media can be varied by designing an appropriate head shape and controlling its angle of attack, in a similar way to flaps or wings moving in fluids. These results support the biological hypotheses which propose that morphological adaptations of desert dwelling organisms aid in their subsurface locomotion. This work also demonstrates that the discovery of biological principles of high performance locomotion within sand can help create the next generation of biophysically inspired robots that could explore potentially hazardous complex flowing environments.PhDCommittee Chair: Daniel I. Goldman; Committee Member: Hang Lu; Committee Member: Jeanette Yen; Committee Member: Shella Keilholz; Committee Member: Young-Hui Chan
    corecore