651 research outputs found

    Micromagnetic simulations of interacting dipoles on a fcc lattice: Application to nanoparticle assemblies

    Full text link
    Micromagnetic simulations are used to examine the effects of cubic and axial anisotropy, magnetostatic interactions and temperature on M-H loops for a collection of magnetic dipoles on fcc and sc lattices. We employ a simple model of interacting dipoles that represent single-domain particles in an attempt to explain recent experimental data on ordered arrays of magnetoferritin nanoparticles that demonstrate the crucial role of interactions between particles in a fcc lattice. Significant agreement between the simulation and experimental results is achieved, and the impact of intra-particle degrees of freedom and surface effects on thermal fluctuations are investigated.Comment: 10 pages, 9 figure

    A ferrofluid based neural network: design of an analogue associative memory

    Full text link
    We analyse an associative memory based on a ferrofluid, consisting of a system of magnetic nano-particles suspended in a carrier fluid of variable viscosity subject to patterns of magnetic fields from an array of input and output magnetic pads. The association relies on forming patterns in the ferrofluid during a trainingdphase, in which the magnetic dipoles are free to move and rotate to minimize the total energy of the system. Once equilibrated in energy for a given input-output magnetic field pattern-pair the particles are fully or partially immobilized by cooling the carrier liquid. Thus produced particle distributions control the memory states, which are read out magnetically using spin-valve sensors incorporated in the output pads. The actual memory consists of spin distributions that is dynamic in nature, realized only in response to the input patterns that the system has been trained for. Two training algorithms for storing multiple patterns are investigated. Using Monte Carlo simulations of the physical system we demonstrate that the device is capable of storing and recalling two sets of images, each with an accuracy approaching 100%.Comment: submitted to Neural Network

    Soliton pair dynamics in patterned ferromagnetic ellipses

    Full text link
    Confinement alters the energy landscape of nanoscale magnets, leading to the appearance of unusual magnetic states, such as vortices, for example. Many basic questions concerning dynamical and interaction effects remain unanswered, and nanomagnets are convenient model systems for studying these fundamental physical phenomena. A single vortex in restricted geometry, also known as a non-localized soliton, possesses a characteristic translational excitation mode that corresponds to spiral-like motion of the vortex core around its equilibrium position. Here, we investigate, by a microwave reflection technique, the dynamics of magnetic soliton pairs confined in lithographically defined, ferromagnetic Permalloy ellipses. Through a comparison with micromagnetic simulations, the observed strong resonances in the subgigahertz frequency range can be assigned to the translational modes of vortex pairs with parallel or antiparallel core polarizations. Vortex polarizations play a negligible role in the static interaction between two vortices, but their effect dominates the dynamics.Comment: supplemental movies on http://www.nature.com/nphys/journal/v1/n3/suppinfo/nphys173_S1.htm

    Magnetic phase diagram of a spin-1 condensate in two dimensions with dipole interaction

    Full text link
    Several new features arise in the ground-state phase diagram of a spin-1 condensate trapped in an optical trap when the magnetic dipole interaction between the atoms is taken into account along with confinement and spin precession. The boundaries between the regions of ferromagnetic and polar phases move as the dipole strength is varied and the ferromagnetic phases can be modulated. The magnetization of the ferromagnetic phase perpendicular to the field becomes modulated as a helix winding around the magnetic field direction, with a wavelength inversely proportional to the dipole strength. This modulation should be observable for current experimental parameters in 87^{87}Rb. Hence the much-sought supersolid state, with broken continuous translation invariance in one direction and broken global U(1) invariance, occurs generically as a metastable state in this system as a result of dipole interaction. The ferromagnetic state parallel to the applied magnetic field becomes striped in a finite system at strong dipolar coupling.Comment: 11 pages, 7 figures;published versio

    Quantifying energetics and dissipation in magnetohydrodynamic turbulence

    Full text link
    We perform a suite of two- and three-dimensional magnetohydrodynamic (MHD) simulations with the Athena code of the non-driven Kelvin-Helmholtz instability in the subsonic, weak magnetic field limit. Focusing the analysis on the non-linear turbulent regime, we quantify energy transfer on a scale-by-scale basis and identify the physical mechanisms responsible for energy exchange by developing the diagnostic known as spectral energy transfer function analysis. At late times when the fluid is in a state of MHD turbulence, magnetic tension mediates the dominant mode of energy injection into the magnetic reservoir, whereby turbulent fluid motions twist and stretch the magnetic field lines. This generated magnetic energy turbulently cascades to smaller scales, while being exchanged backwards and forwards with the kinetic energy reservoir, until finally being dissipated. Incorporating explicit dissipation pushes the dissipation scale to larger scales than if the dissipation were entirely numerical. For scales larger than the dissipation scale, we show that the physics of energy transfer in decaying MHD turbulence is robust to numerical effects.Comment: 23 pages, 20 figures, 4 tables, Accepted for publication in MNRA

    Hysteresis and noise in ferromagnetic materials with parallel domain walls

    Full text link
    We investigate dynamic hysteresis and Barkhausen noise in ferromagnetic materials with a huge number of parallel and rigid Bloch domain walls. Considering a disordered ferromagnetic system with strong in-plane uniaxial anisotropy and in-plane magnetization driven by an external magnetic field, we calculate the equations of motion for a set of coupled domain walls, considering the effects of the long-range dipolar interactions and disorder. We derive analytically an expression for the magnetic susceptivity, related to the effective demagnetizing factor, and show that it has a logarithmic dependence on the number of domains. Next, we simulate the equations of motion and study the effect of the external field frequency and the disorder on the hysteresis and noise properties. The dynamic hysteresis is very well explained by means of the loss separation theory.Comment: 13 pages, 11 figure
    • …
    corecore