192,570 research outputs found

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Get PDF
    Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Data in different modalities are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature extraction and correlation learning are simultaneously performed and joint representation is learned by considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval

    Audio-Visual Embedding for Cross-Modal MusicVideo Retrieval through Supervised Deep CCA

    Full text link
    Deep learning has successfully shown excellent performance in learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities, such as audio and video, should be taken into account. Music video retrieval by given musical audio is a natural way to search and interact with music contents. In this work, we study cross-modal music video retrieval in terms of emotion similarity. Particularly, audio of an arbitrary length is used to retrieve a longer or full-length music video. To this end, we propose a novel audio-visual embedding algorithm by Supervised Deep CanonicalCorrelation Analysis (S-DCCA) that projects audio and video into a shared space to bridge the semantic gap between audio and video. This also preserves the similarity between audio and visual contents from different videos with the same class label and the temporal structure. The contribution of our approach is mainly manifested in the two aspects: i) We propose to select top k audio chunks by attention-based Long Short-Term Memory (LSTM)model, which can represent good audio summarization with local properties. ii) We propose an end-to-end deep model for cross-modal audio-visual learning where S-DCCA is trained to learn the semantic correlation between audio and visual modalities. Due to the lack of music video dataset, we construct 10K music video dataset from YouTube 8M dataset. Some promising results such as MAP and precision-recall show that our proposed model can be applied to music video retrieval.Comment: 8 pages, 9 figures. Accepted by ISM 201

    FMA: A Dataset For Music Analysis

    Full text link
    We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fmaComment: ISMIR 2017 camera-read
    • …
    corecore