7 research outputs found

    Can Collimated Extraterrestrial Signals be Intercepted?

    Full text link
    The Optical Search for Extraterrestrial Intelligence (OSETI) attempts to detect collimated, narrowband pulses of electromagnetic radiation. These pulses may either consist of signals intentionally directed at the Earth, or signals between two star systems with a vector that unintentionally intersects the Solar System, allowing Earth to intercept the communication. But should we expect to be able to intercept these unintentional signals? And what constraints can we place upon the frequency of intelligent civilisations if we do? We carry out Monte Carlo Realisation simulations of interstellar communications between civilisations in the Galactic Habitable Zone (GHZ) using collimated beams. We measure the frequency with which beams between two stars are intercepted by a third. The interception rate increases linearly with the fraction of communicating civilisations, and as the cube of the beam opening angle, which is somewhat stronger than theoretical expectations, which we argue is due to the geometry of the GHZ. We find that for an annular GHZ containing 10,000 civilisations, intersections are unlikely unless the beams are relatively uncollimated. These results indicate that optical SETI is more likely to find signals deliberately directed at the Earth than accidentally intercepting collimated communications. Equally, civilisations wishing to establish a network of communicating species may use weakly collimated beams to build up the network through interception, if they are willing to pay a cost penalty that is lower than that meted by fully isotropic beacons. Future SETI searches should consider the possibility that communicating civilisations will attempt to strike a balance between optimising costs and encouraging contact between civilisations, and look for weakly collimated pulses as well as narrow-beam pulses directed deliberately at the Earth.Comment: 12 pages, 7 figures, accepted for publication in JBI

    Challenges in Scientific Data Communication from Low-Mass Interstellar Probes

    Full text link
    A downlink for the return of scientific data from space probes at interstellar distances is studied. The context is probes moving at relativistic speed using a terrestrial directed-energy beam for propulsion, necessitating very-low mass probes. Achieving simultaneous communication from a swarm of probes launched at regular intervals to a target at the distance of Proxima Centauri is addressed. The analysis focuses on fundamental physical and statistical communication limitations on downlink performance rather than a concrete implementation. Transmission time/distance and probe mass are chosen to achieve the best data latency vs volume tradeoff. Challenges in targeting multiple probe trajectories with a single receiver are addressed, including multiplexing, parallax, and target star proper motion. Relevant sources of background radiation, including cosmic, atmospheric, and receiver dark count are identified and estimated. Direct detection enables high photon efficiency and incoherent aperture combining. A novel burst pulse-position modulation (BPPM) beneficially expands the optical bandwidth and ameliorates receiver dark counts. A canonical receive optical collector combines minimum transmit power with constrained swarm-probe coverage. Theoretical limits on reliable data recovery and sensitivity to the various BPPM model parameters are applied, including a wide range of total collector areas. Significant near-term technological obstacles are identified. Enabling innovations include a high peak-to-average power ratio, a large source extinguishing factor, the shortest atmosphere-transparent wavelength to minimize target star interference, adaptive optics for atmospheric turbulence, very selective bandpass filtering (possibly with multiple passbands), very low dark-count single-photon superconducting detectors, and very accurate attitude control and pointing mechanisms
    corecore