46,422 research outputs found

    Multimodal Grounding for Sequence-to-Sequence Speech Recognition

    Get PDF
    Humans are capable of processing speech by making use of multiple sensory modalities. For example, the environment where a conversation takes place generally provides semantic and/or acoustic context that helps us to resolve ambiguities or to recall named entities. Motivated by this, there have been many works studying the integration of visual information into the speech recognition pipeline. Specifically, in our previous work, we propose a multistep visual adaptive training approach which improves the accuracy of an audio-based Automatic Speech Recognition (ASR) system. This approach, however, is not end-to-end as it requires fine-tuning the whole model with an adaptation layer. In this paper, we propose novel end-to-end multimodal ASR systems and compare them to the adaptive approach by using a range of visual representations obtained from state-of-the-art convolutional neural networks. We show that adaptive training is effective for S2S models leading to an absolute improvement of 1.4% in word error rate. As for the end-to-end systems, although they perform better than baseline, the improvements are slightly less than adaptive training, 0.8 absolute WER reduction in single-best models. Using ensemble decoding, end-to-end models reach a WER of 15% which is the lowest score among all systems.Comment: ICASSP 201

    End-to-End Learning of Speech 2D Feature-Trajectory for Prosthetic Hands

    Full text link
    Speech is one of the most common forms of communication in humans. Speech commands are essential parts of multimodal controlling of prosthetic hands. In the past decades, researchers used automatic speech recognition systems for controlling prosthetic hands by using speech commands. Automatic speech recognition systems learn how to map human speech to text. Then, they used natural language processing or a look-up table to map the estimated text to a trajectory. However, the performance of conventional speech-controlled prosthetic hands is still unsatisfactory. Recent advancements in general-purpose graphics processing units (GPGPUs) enable intelligent devices to run deep neural networks in real-time. Thus, architectures of intelligent systems have rapidly transformed from the paradigm of composite subsystems optimization to the paradigm of end-to-end optimization. In this paper, we propose an end-to-end convolutional neural network (CNN) that maps speech 2D features directly to trajectories for prosthetic hands. The proposed convolutional neural network is lightweight, and thus it runs in real-time in an embedded GPGPU. The proposed method can use any type of speech 2D feature that has local correlations in each dimension such as spectrogram, MFCC, or PNCC. We omit the speech to text step in controlling the prosthetic hand in this paper. The network is written in Python with Keras library that has a TensorFlow backend. We optimized the CNN for NVIDIA Jetson TX2 developer kit. Our experiment on this CNN demonstrates a root-mean-square error of 0.119 and 20ms running time to produce trajectory outputs corresponding to the voice input data. To achieve a lower error in real-time, we can optimize a similar CNN for a more powerful embedded GPGPU such as NVIDIA AGX Xavier

    Dyadic Speech-based Affect Recognition using DAMI-P2C Parent-child Multimodal Interaction Dataset

    Full text link
    Automatic speech-based affect recognition of individuals in dyadic conversation is a challenging task, in part because of its heavy reliance on manual pre-processing. Traditional approaches frequently require hand-crafted speech features and segmentation of speaker turns. In this work, we design end-to-end deep learning methods to recognize each person's affective expression in an audio stream with two speakers, automatically discovering features and time regions relevant to the target speaker's affect. We integrate a local attention mechanism into the end-to-end architecture and compare the performance of three attention implementations -- one mean pooling and two weighted pooling methods. Our results show that the proposed weighted-pooling attention solutions are able to learn to focus on the regions containing target speaker's affective information and successfully extract the individual's valence and arousal intensity. Here we introduce and use a "dyadic affect in multimodal interaction - parent to child" (DAMI-P2C) dataset collected in a study of 34 families, where a parent and a child (3-7 years old) engage in reading storybooks together. In contrast to existing public datasets for affect recognition, each instance for both speakers in the DAMI-P2C dataset is annotated for the perceived affect by three labelers. To encourage more research on the challenging task of multi-speaker affect sensing, we make the annotated DAMI-P2C dataset publicly available, including acoustic features of the dyads' raw audios, affect annotations, and a diverse set of developmental, social, and demographic profiles of each dyad.Comment: Accepted by the 2020 International Conference on Multimodal Interaction (ICMI'20

    The Effects of Iconic Gestures and Babble Language on Word Intelligibility in Sentence Context

    Get PDF
    Purpose:This study investigated to what extent iconic co-speech gestures helpword intelligibility in sentence context in two different linguistic maskers (nativevs. foreign). It was hypothesized that sentence recognition improves with thepresence of iconic co-speech gestures and with foreign compared to nativebabble.Method:Thirty-two native Dutch participants performed a Dutch word recogni-tion task in context in which they were presented with videos in which anactress uttered short Dutch sentences (e.g.,Ze begint te openen,“She starts toopen”). Participants were presented with a total of six audiovisual conditions: nobackground noise (i.e., clear condition) without gesture, no background noise withgesture, French babble without gesture, French babble with gesture, Dutch bab-ble without gesture, and Dutch babble with gesture; and they were asked to typedown what was said by the Dutch actress. The accurate identification of theaction verbs at the end of the target sentences was measured.Results:The results demonstrated that performance on the task was better inthe gesture compared to the nongesture conditions (i.e., gesture enhancementeffect). In addition, performance was better in French babble than in Dutchbabble.Conclusions:Listeners benefit from iconic co-speech gestures during commu-nication and from foreign background speech compared to native. Theseinsights into multimodal communication may be valuable to everyone whoengages in multimodal communication and especially to a public who oftenworks in public places where competing speech is present in the background

    End-to-End Evaluation of a Spoken Dialogue System for Learning Basic Mathematics

    Full text link
    The advances in language-based Artificial Intelligence (AI) technologies applied to build educational applications can present AI for social-good opportunities with a broader positive impact. Across many disciplines, enhancing the quality of mathematics education is crucial in building critical thinking and problem-solving skills at younger ages. Conversational AI systems have started maturing to a point where they could play a significant role in helping students learn fundamental math concepts. This work presents a task-oriented Spoken Dialogue System (SDS) built to support play-based learning of basic math concepts for early childhood education. The system has been evaluated via real-world deployments at school while the students are practicing early math concepts with multimodal interactions. We discuss our efforts to improve the SDS pipeline built for math learning, for which we explore utilizing MathBERT representations for potential enhancement to the Natural Language Understanding (NLU) module. We perform an end-to-end evaluation using real-world deployment outputs from the Automatic Speech Recognition (ASR), Intent Recognition, and Dialogue Manager (DM) components to understand how error propagation affects the overall performance in real-world scenarios.Comment: Proceedings of the 1st Workshop on Mathematical Natural Language Processing (MathNLP) at EMNLP 202
    corecore