14,587 research outputs found

    Cross-layer design for wireless sensor relay networks

    Get PDF
    In recent years, the idea of wireless sensor networks has gathered a great deal of attention. A distributed wireless sensor network may have hundreds of small sensor nodes. Each individual sensor contains both processing and communication elements and is designed in some degree to monitor the environmental events specified by the end user of the network. Information about the environment is gathered by sensors and delivered to a remote collector. This research conducts an investigation with respect to the energy efficiency and the cross-layer design in wireless sensor networks. Motivated by the multipath utilization and transmit diversity capability of space-time block codes (STBC), a new energy efficient cooperative routing algorithm using the STBC is proposed. Furthermore, the steady state performance of the network is analyzed via a Markov chain model. The proposed approach in this dissertation can significantly reduce the energy consumption and improve the power efficiency. This work also studies the application of differential STBC for wireless multi-hop sensor networks over fading channels. Using differential STBC, multiple sensors are selected acting as parallel relay nodes to receive and relay collected data. The proposed technique offers low complexity, since it does not need to track or estimate the time-varying channel coefficients. Analysis and simulation results show that the new approach can improve the system performance. This dissertation models the cooperative relay method for sensor networks using a Markov chain and an M/G/1 queuing system. The analytical and simulation results indicate system improvements in terms of throughput and end-to-end delay. Moreover, the impact of network resource constraints on the performance of multi-hop sensor networks with cooperative relay is also investigated. The system performance under assumptions of infinite buffer or finite buffer sizes is studied, the go through delay and the packet drop probability are improved compared to traditional single relay method. Moreover, a packet collision model for crucial nodes in wireless sensor networks is introduced. Using such a model, a space and network diversity combining (SNDC) method is designed to separate the collision at the collector. The network performance in terms of throughput, delay, energy consumption and efficiency are analyzed and evaluated

    Energy efficiency of some non-cooperative, cooperative and hybrid communication schemes in multi-relay WSNs

    Get PDF
    In this paper we analyze the energy efficiency of single-hop, multi-hop, cooperative selective decode-and-forward, cooperative incremental decode-and-forward, and even the combination of cooperative and non-cooperative schemes, in wireless sensor networks composed of several nodes. We assume that, as the sensor nodes can experience either non line-of-sight or some line-of-sight conditions, the Nakagami-m fading distribution is used to model the wireless environment. The energy efficiency analysis is constrained by a target outage probability and an end-to-end throughput. Our results show that in most scenarios cooperative incremental schemes are more energy efficient than the other methods

    A cross layer multi hop network architecture for wireless Ad Hoc networks

    Get PDF
    In this paper, a novel decentralized cross-layer multi-hop cooperative network architecture is presented. Our architecture involves the design of a simple yet efficient cooperative flooding scheme,two decentralized opportunistic cooperative forwarding mechanisms as well as the design of Routing Enabled Cooperative Medium Access Control (RECOMAC) protocol that spans and incorporates the physical, medium access control (MAC) and routing layers for improving the performance of multihop communication. The proposed architecture exploits randomized coding at the physical layer to realize cooperative diversity. Randomized coding alleviates relay selection and actuation mechanisms,and therefore reduces the coordination among the relays. The coded packets are forwarded via opportunistically formed cooperative sets within a region, without communication among the relays and without establishing a prior route. In our architecture, routing layer functionality is submerged into the MAC layer to provide seamless cooperative communication while the messaging overhead to set up routes, select and actuate relays is minimized. RECOMAC is shown to provide dramatic performance improvements, such as eight times higher throughput and ten times lower end-to-end delay as well as reduced overhead, as compared to networks based on well-known IEEE 802.11 and Ad hoc On Demand Distance Vector (AODV) protocols

    RECOMAC: a cross-layer cooperative network protocol for wireless ad hoc networks

    Get PDF
    A novel decentralized cross-layer multi-hop cooperative protocol, namely, Routing Enabled Cooperative Medium Access Control (RECOMAC) is proposed for wireless ad hoc networks. The protocol architecture makes use of cooperative forwarding methods, in which coded packets are forwarded via opportunistically formed cooperative sets within a region, as RECOMAC spans the physical, medium access control (MAC) and routing layers. Randomized coding is exploited at the physical layer to realize cooperative transmissions, and cooperative forwarding is implemented for routing functionality, which is submerged into the MAC layer, while the overhead for MAC and route set up is minimized. RECOMAC is shown to provide dramatic performance improvements of eight times higher throughput and one tenth of end-to-end delay than that of the conventional architecture in practical wireless mesh networks

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks
    • …
    corecore