665,698 research outputs found

    End-to-End Audiovisual Fusion with LSTMs

    Full text link
    Several end-to-end deep learning approaches have been recently presented which simultaneously extract visual features from the input images and perform visual speech classification. However, research on jointly extracting audio and visual features and performing classification is very limited. In this work, we present an end-to-end audiovisual model based on Bidirectional Long Short-Term Memory (BLSTM) networks. To the best of our knowledge, this is the first audiovisual fusion model which simultaneously learns to extract features directly from the pixels and spectrograms and perform classification of speech and nonlinguistic vocalisations. The model consists of multiple identical streams, one for each modality, which extract features directly from mouth regions and spectrograms. The temporal dynamics in each stream/modality are modeled by a BLSTM and the fusion of multiple streams/modalities takes place via another BLSTM. An absolute improvement of 1.9% in the mean F1 of 4 nonlingusitic vocalisations over audio-only classification is reported on the AVIC database. At the same time, the proposed end-to-end audiovisual fusion system improves the state-of-the-art performance on the AVIC database leading to a 9.7% absolute increase in the mean F1 measure. We also perform audiovisual speech recognition experiments on the OuluVS2 database using different views of the mouth, frontal to profile. The proposed audiovisual system significantly outperforms the audio-only model for all views when the acoustic noise is high.Comment: Accepted to AVSP 2017. arXiv admin note: substantial text overlap with arXiv:1709.00443 and text overlap with arXiv:1701.0584

    Text-detection and -recognition from natural images

    Get PDF
    Text detection and recognition from images could have numerous functional applications for document analysis, such as assistance for visually impaired people; recognition of vehicle license plates; evaluation of articles containing tables, street signs, maps, and diagrams; keyword-based image exploration; document retrieval; recognition of parts within industrial automation; content-based extraction; object recognition; address block location; and text-based video indexing. This research exploited the advantages of artificial intelligence (AI) to detect and recognise text from natural images. Machine learning and deep learning were used to accomplish this task.In this research, we conducted an in-depth literature review on the current detection and recognition methods used by researchers to identify the existing challenges, wherein the differences in text resulting from disparity in alignment, style, size, and orientation combined with low image contrast and a complex background make automatic text extraction a considerably challenging and problematic task. Therefore, the state-of-the-art suggested approaches obtain low detection rates (often less than 80%) and recognition rates (often less than 60%). This has led to the development of new approaches. The aim of the study was to develop a robust text detection and recognition method from natural images with high accuracy and recall, which would be used as the target of the experiments. This method could detect all the text in the scene images, despite certain specific features associated with the text pattern. Furthermore, we aimed to find a solution to the two main problems concerning arbitrarily shaped text (horizontal, multi-oriented, and curved text) detection and recognition in a low-resolution scene and with various scales and of different sizes.In this research, we propose a methodology to handle the problem of text detection by using novel combination and selection features to deal with the classification algorithms of the text/non-text regions. The text-region candidates were extracted from the grey-scale images by using the MSER technique. A machine learning-based method was then applied to refine and validate the initial detection. The effectiveness of the features based on the aspect ratio, GLCM, LBP, and HOG descriptors was investigated. The text-region classifiers of MLP, SVM, and RF were trained using selections of these features and their combinations. The publicly available datasets ICDAR 2003 and ICDAR 2011 were used to evaluate the proposed method. This method achieved the state-of-the-art performance by using machine learning methodologies on both databases, and the improvements were significant in terms of Precision, Recall, and F-measure. The F-measure for ICDAR 2003 and ICDAR 2011 was 81% and 84%, respectively. The results showed that the use of a suitable feature combination and selection approach could significantly increase the accuracy of the algorithms.A new dataset has been proposed to fill the gap of character-level annotation and the availability of text in different orientations and of curved text. The proposed dataset was created particularly for deep learning methods which require a massive completed and varying range of training data. The proposed dataset includes 2,100 images annotated at the character and word levels to obtain 38,500 samples of English characters and 12,500 words. Furthermore, an augmentation tool has been proposed to support the proposed dataset. The missing of object detection augmentation tool encroach to proposed tool which has the ability to update the position of bounding boxes after applying transformations on images. This technique helps to increase the number of samples in the dataset and reduce the time of annotations where no annotation is required. The final part of the thesis presents a novel approach for text spotting, which is a new framework for an end-to-end character detection and recognition system designed using an improved SSD convolutional neural network, wherein layers are added to the SSD networks and the aspect ratio of the characters is considered because it is different from that of the other objects. Compared with the other methods considered, the proposed method could detect and recognise characters by training the end-to-end model completely. The performance of the proposed method was better on the proposed dataset; it was 90.34. Furthermore, the F-measure of the method’s accuracy on ICDAR 2015, ICDAR 2013, and SVT was 84.5, 91.9, and 54.8, respectively. On ICDAR13, the method achieved the second-best accuracy. The proposed method could spot text in arbitrarily shaped (horizontal, oriented, and curved) scene text.</div

    An HCI Speech-Based Architecture for Man-To-Machine and Machine-To-Man Communication in Yorùbá Language

    Get PDF
    Man communicates with man by natural language, sign language, and/or gesture but communicates with machine via electromechanical devices such as mouse, and keyboard.  These media of effecting Man-To-Machine (M2M) communication are electromechanical in nature. Recent research works, however, have been able to achieve some high level of success in M2M using natural language, sign language, and/or gesture under constrained conditions. However, machine communication with man, in reverse direction, using natural language is still at its infancy. Machine communicates with man usually in textual form. In order to achieve acceptable quality of end-to-end M2M communication, there is need for robust architecture to develop a novel speech-to-text and text-to-speech system. In this paper, an HCI speech-based architecture for Man-To-Machine and Machine-To-Man communication in Yorùbá language is proposed to carry Yorùbá people along in the advancement taking place in the world of Information Technology. Dynamic Time Warp is specified in the model to measure the similarity between the voice utterances in the sound library. In addition, Vector Quantization, Guassian Mixture Model and Hidden Markov Model are incorporated in the proposed architecture for compression and observation. This approach will yield a robust Speech-To-Text and Text-To-Speech system. Keywords: Yorùbá Language, Speech Recognition, Text-To-Speech, Man-To-Machine, Machine-To-Ma

    Text Detection and Recognition in the Wild

    Get PDF
    Text detection and recognition (TDR) in highly structured environments with a clean background and consistent fonts (e.g., office documents, postal addresses and bank cheque) is a well understood problem (i.e., OCR), however this is not the case for unstructured environments. The main objective for scene text detection is to locate text within images captured in the wild. For scene text recognition, the techniques map each detected or cropped word image into string. Nowadays, convolutional neural networks (CNNs) and Recurrent Neural Networks (RNN) deep learning architectures dominate most of the recent state-of-the-art (SOTA) scene TDR methods. Most of the reported respective accuracies of current SOTA TDR methods are in the range of 80% to 90% on benchmark datasets with regular and clear text instances. However, those detecting and/or recognizing results drastically deteriorate 10% and 30% - in terms of F-measure detection and word recognition accuracy performances with irregular or occluded text images. Transformers and their variations are new deep learning architectures that mitigate the above-mentioned issues for CNN and RNN-based pipelines.Unlike Recurrent Neural Networks (RNNs), transformers are models that learn how to encode and decode data by looking not only backward but also forward in order to extract relevant information from a whole sequence. This thesis utilizes the transformer architecture to address the irregular (multi-oriented and arbitrarily shaped) and occluded text challenges in the wild images. Our main contributions are as follows: (1) We first targeted solving the irregular TDR in two separate architectures as follows: In Chapter 4, unlike the SOTA text detection frameworks that have complex pipelines and use many hand-designed components and post-processing stages, we design a conceptually more straightforward and trainable end-to-end architecture of transformer-based detector for multi-oriented scene text detection, which can directly predict the set of detections (i.e., text and box regions) of the input image. A central contribution to our work is introducing a loss function tailored to the rotated text detection problem that leverages a rotated version of a generalized intersection over union score to capture the rotated text instances adequately. In Chapter 5, we extend our previous architecture to arbitrary shaped scene text detection. We design a new text detection technique that aims to better infer n-vertices of a polygon or the degree of a Bezier curve to represent irregular-text instances. We also propose a loss function that combines a generalized-split-intersection-over union loss defined over the piece-wise polygons. In Chapter 6, we show that our transformer-based architecture without rectifying the input curved text instances is more suitable than SOTA RNN-based frameworks equipped with rectification modules for irregular text recognition in the wild images. Our main contribution to this chapter is leveraging a 2D Learnable Sinusoidal frequencies Positional Encoding (2LSPE) with a modified feed-forward neural network to better encode the 2D spatial dependencies of characters in the irregular text instances. (2) Since TDR tasks encounter the same challenging problems (e.g., irregular text, illumination variations, low-resolution text, etc.), we present a new transformer model that can detect and recognize individual characters of text instances in an end-to-end manner. Reading individual characters later makes a robust occlusion and arbitrarily shaped text spotting model without needing polygon annotation or multiple stages of detection and recognition modules used in SOTA text spotting architectures. In Chapter 7, unlike SOTA methods that combine two different pipelines of detection and recognition modules for a complete text reading, we utilize our text detection framework by leveraging a recent transformer-based technique, namely Deformable Patch-based Transformer (DPT), as a feature extracting backbone, to robustly read the class and box coordinates of irregular characters in the wild images. (3) Finally, we address the occlusion problem by using a multi-task end-to-end scene text spotting framework. In Chapter 8, we leverage a recent transformer-based framework in deep learning, namely Masked Auto Encoder (MAE), as a backbone for scene text recognition and end-to-end scene text spotting pipelines to overcome the partial occlusion limitation. We design a new multitask End-to-End transformer network that directly outputs characters, word instances, and their bounding box representations, saving the computational overhead as it eliminates multiple processing steps. The unified proposed framework can also detect and recognize arbitrarily shaped text instances without using polygon annotations
    • …
    corecore