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Abstract

Text detection and recognition (TDR) in highly structured environments with a clean background
and consistent fonts (e.g., office documents, postal addresses and bank cheque) is a well under-
stood problem (i.e., OCR), however this is not the case for unstructured environments. The main
objective for scene text detection is to locate text within images captured in the wild. For scene
text recognition, the techniques map each detected or cropped word image into string. Nowadays,
convolutional neural networks (CNNs) and Recurrent Neural Networks (RNN) deep learning ar-
chitectures dominate most of the recent state-of-the-art (SOTA) scene TDR methods. Most of the
reported respective accuracies of current SOTA TDR methods are in the range of 80% to 90%
on benchmark datasets with regular and clear text instances. However, those detecting and/or
recognizing results drastically deteriorate ∼ 10% and ∼ 30% - in terms of F-measure detection
and word recognition accuracy performances with irregular or occluded text images.

Transformers and their variations are new deep learning architectures that mitigate the above-
mentioned issues for CNN and RNN-based pipelines. Unlike Recurrent Neural Networks (RNNs),
transformers are models that learn how to encode and decode data by looking not only backward
but also forward in order to extract relevant information from a whole sequence. This thesis uti-
lizes the transformer architecture to address the irregular (multi-oriented and arbitrarily shaped)
and occluded text challenges in the wild images. Our main contributions are as follows:

(1) We first targeted solving the irregular TDR in two separate architectures as follows:
• In Chapter 4, unlike the SOTA text detection frameworks that have complex pipelines

and use many hand-designed components and post-processing stages, we design a con-
ceptually more straightforward and trainable end-to-end architecture of transformer-based
detector for multi-oriented scene text detection, which can directly predict the set of de-
tections (i.e., text and box regions) of the input image. A central contribution to our work
is introducing a loss function tailored to the rotated text detection problem that leverages
a rotated version of a generalized intersection over union score to capture the rotated text
instances adequately.

• In Chapter 5, we extend our previous architecture to arbitrary shaped scene text detection.
We design a new text detection technique that aims to better infer n-vertices of a polygon
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or the degree of a Bezier curve to represent irregular-text instances. We also propose a
loss function that combines a generalized-split-intersection-over union loss defined over
the piece-wise polygons.

• In Chapter 6, we show that our transformer-based architecture without rectifying the in-
put curved text instances is more suitable than SOTA RNN-based frameworks equipped
with rectification modules for irregular text recognition in the wild images. Our main
contribution to this chapter is leveraging a 2D Learnable Sinusoidal frequencies Positional
Encoding (2LSPE) with a modified feed-forward neural network to better encode the 2D
spatial dependencies of characters in the irregular text instances.

(2) Since TDR tasks encounter the same challenging problems (e.g., irregular text, illumi-
nation variations, low-resolution text, etc.), we present a new transformer model that can
detect and recognize individual characters of text instances in an end-to-end manner. Read-
ing individual characters later makes a robust occlusion and arbitrarily shaped text spotting
model without needing polygon annotation or multiple stages of detection and recognition
modules used in SOTA text spotting architectures.

• In Chapter 7, unlike SOTA methods that combine two different pipelines of detection
and recognition modules for a complete text reading, we utilize our text detection frame-
work by leveraging a recent transformer-based technique, namely Deformable Patch-based
Transformer (DPT), as a feature extracting backbone, to robustly read the class and box
coordinates of irregular characters in the wild images.

(3) Finally, we address the occlusion problem by using a multi-task end-to-end scene text
spotting framework.

• In Chapter 8, we leverage a recent transformer-based framework in deep learning, namely
Masked Auto Encoder (MAE), as a backbone for scene text recognition and end-to-end

scene text spotting pipelines to overcome the partial occlusion limitation. We design a new
multitask End-to-End transformer network that directly outputs characters, word instances,
and their bounding box representations, saving the computational overhead as it eliminates
multiple processing steps. The unified proposed framework can also detect and recognize
arbitrarily shaped text instances without using polygon annotations.
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Chapter 1

Introduction

Text is a vital tool for communications and plays an important role in our lives. It can be em-

bedded into documents or scenes as a mean of conveying information [12–14]. Identifying text

can be considered as a main building block for a variety of computer vision-based applications,

such as robotics [15, 16], industrial automation [17], image search [18, 19], instant translation

[20, 21], automotive assistance [22] and analysis of sport videos [23]. Generally, the area of

text identification can be categorized into two main categories: (1) identifying text of scanned

printed documents and (2) text captured in daily scenes (e.g., images with arbitrarily rotated or

distorted text captured on urban, rural, highway, indoor / outdoor of buildings, and subject to var-

ious geometric distortions, illumination and environmental conditions), where the latter is called

text in the wild or scene text. Figure 1.1 illustrates examples of these two types of text-images.

For identifying text of scanned printed documents, Optical Character Recognition (OCR) meth-

ods have been widely used [12, 24–26], and have achieved superior performances for reading

printed documents with satisfactory resolution; However, these traditional OCR methods face

many complex challenges when detecting and recognizing text in the wild [12, 13, 27]. The

challenges of detecting and/or recognizing text in images captured in the wild can be categorized
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as follows:

• Text diversity: text can exist in a wide variety of colors, fonts, orientations and languages.

• Scene complexity: scene elements contain text on signs, bricks and symbols.

• Distortion factors: text is subjected to the effect of image distortion due to several con-

tributing factors such as surface geometry, perspective view, motion blurriness, insufficient

camera resolution, capturing angle and partial occlusion [12, 14].

• Irregular text: refers to the text with arbitrary shapes that usually have sever orientation

and curvature.

• Occlusion: text instances are sometimes in situations where an external object/illumination

blocks a portion of some characters or when a part of a character is missing.

In the literature, many techniques have been proposed to address the challenges of scene text

detection and/or recognition. These schemes can be categorized into classical machine learning-

based, as in [28–40], and deep learning-based, as in [41–67], approaches. A classical approach

is often based on combining a feature extraction technique with a machine learning model to

detect or recognize text in scene images [31, 68, 69]. Although some of these methods [68, 69]

achieved good performance on detecting or recognizing horizontal text [12, 14], they rely on

designing hand-crafted features, which limit their performances to handling arbitrarily shaped

text instances. these methods typically fail to handle images that contains multi-oriented or

curved text [13, 14]. On the other hand, deep-learning based methods have shown effectiveness

in detecting and/or recognizing text in adverse situations [13, 46, 57, 67].

1.1 Problem Definition and Challenges

Recent scene text detection and recognition methods have utilized DCNN [9, 10, 73, 74] and

RNN frameworks [6, 75], and have achieved promising performances on various challenging
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Figure 1.1: Examples for two main types of text in images: text in a printed document (left
column) and text captured in the wild (right column), where sample images are from the public
datasets in [70–72].

benchmark datasets [71, 72, 76–88]. However, there are two significant issues that still require

more careful studies, which can be summarized as follows:

• Irregular Text: although recent methods [4, 46, 54, 57, 58, 89–92] have tried to detect

irregular-text, there are still several drawbacks to these methods: (a) the resulted bounding

boxes do not minimally encapsulate the text well, and (b) they require a complicated ar-

chitecture with multiple stages of post-processing. The existing state-of-the-art scene text

recognition methods [27, 63–67, 93–95] also perform well when the text in an image is

horizontal or nearly horizontal but they fail to correctly recognize the text when text is in

arbitrary shapes or geometrically distorted

• Occluded Text: Existing methods in scene text detection and recognition rely on the

visibility of the target characters in images, however, text affected by heavy occlusion
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may significantly undermine the performance of these methods [27, 57, 58, 67]. This

failure is often due to the features generated by the current CNNs architectures that have

limited robustness to occlusion. This opens the possibilities to either improve the feature

extractors and/or the learning models to better handle these sever occlusions.

1.2 Objectives of Thesis

In order to address the problems mentioned above, the objectives of this thesis can be summarized

as follows:

• The first goal of this thesis is to design a transformer-based architecture [96] with spatial

transformation [97] in order to detect and recognize irregular text in the wild images.

In this proposal, we introduce a new architecture that is able to detect multi-oriented or

curved text, encapsulated by quadrilateral boxes or Bezier curve representation, which

will overcome the drawbacks of directly deploying a general text detector as in [96] for

the scene text detection task. In addition, we aim to simplify the current RNN based scene

text recognition architectures [27, 64, 65, 67] by leveraging the transformer [98], and study

the effect of the spatial rectification module on the overall recognition accuracy.

• The second goal of this thesis is to propose a direction to allow future techniques to over-

come the occlusion limitation by unifying the masked autoencoders [7] with our end-to-

end transformer-based text detection and recognition framework. The proposed pipeline

can localize the occluders and subsequently focus on the non-occluded characters of the

text to make a robust text detection/recognition.
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1.3 Contributions

Our main goal in this research work is to design a transformer-based architecture [1, 96] in order

to detect and recognize irregular and/or occluded text in the wild images. In order to address the

problems mentioned above, the rationale and contributions of this research can be summarized

as follows:

1.3.1 Transformer for Scene Text Detection

Rationale: Current scene text detection methods cast text detection as an object detection prob-

lem, and their framework is mostly inherited from object detection algorithms. In object detec-

tion problems, the goal is to classify all the boxes in the images. Object-detection is a challenging

input-to-output mapping problem. This abstract mathematical problem is modeled as a Machine

Learning (ML) problem. The ML problem by itself is a proxy, and the specification of it in-

volves introducing new assumptions and approximations. The choices that are made introduce

new sub-problems that require solving these new sub-problems, such as: (1) Too many boxes,

(2) classification rule is undefined, (3) redundant outputs, and (4) foreground-background imbal-

ance. However, more extensive changes may involve rethinking the machine-learning problem.

One of these types of researches is Detection using a transformer (DETR) [96], which has

used different kinds of fundamental substrates. The essential advantage of using a transformer

in detection is the using of an element relation modeling mechanism [99]. For this purpose, the

transformer uses a set of object queries, which are learned vectors; they interact with each other

and with the image features inside the transformer decoder. What differentiates these queries

from the classical approach is that they do not have a prior geometric meaning. The category

and box are predicted from each query taken from the model without applying a classical non-

maximum suppression algorithm. Because the model predicts the output-set directly rather than
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defining a classification and regression problem on quantized boxes, it avoids label assignment

heuristics issues.

By using a transformer for scene text detection: the encoder’s multi-head self-attention during

training learns how to separate individual words in the scene image by performing the global

computations. Also, the decoder typically learns how to attend to different part of characters

in the words by using different learnable vectors (so called object queries). After training, the

last layer of the decoder is capable of directly predicting the set of detections with an absolute

bounding box eliminating the use of any hand-designed components and post-processing like

anchor design and non-max suppression [46, 48, 58, 90].

Contribution: Unlike the baseline transformer-based method in [96] that only generates rectan-

gular bounding boxes for detected objects, and therefore, is not designed for handling arbitrary

shape detection; we propose a new architecture that is able to detect multi-oriented (Chapter 4)

and irregular text by leveraging a prediction head with a polygon or Bezier curve representation

(Chapter 5). Thus, our method is more suited to the scene text detection task as it predicts for

each text region 20 or 16 control points of a polygon box or a Bezier curve, respectively, which

will overcome the drawbacks of directly deploying a general object detector as in [96] that pre-

dicts only 4 points of every rectangular box. We also leverage a loss function that better manages

the changes in scales and aspect ratios of the detected text regions.

1.3.2 Transformer for Scene Text Recognition

Rationale: Recent recognition methods are mainly based on the combination of a convolutional

neural network (CNN) as a feature extractor, with a Recurrent Neural Networks (RNNs) for

capturing sequential dependency and producing sequence of characters. The existing RNN-

based methods [27, 63–67, 93–95] perform well when the text in an image is horizontal or nearly
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horizontal but they fail to correctly recognize the text when text is in arbitrary shapes or distorted.

The main reason for failures is that RNN-based methods require converted one-dimensional (1D)

features and are not designed for recognizing irregular-text instances due to losing the spatial

information within two-dimensional (2D) images. Some methods have tried to mitigate the high

curvature recognition problem using a rectification module [11] by first rectifying the input image

into a normalized image, and then treating recognition as a sequence prediction task. However,

rectification causes errors in character recognition due to distortion perspective especially in

severe curvature or vertical word images.

Different from RNN based sequence-to-sequence model, the transformer adopts global at-

tention to encode and decode characters inside the text image using a look ahead strategy that

does not consider the order of pixels. Transformers have been widely applied to problems with

sequential data. Based on the idea that a scene image can be treated as a sequence of charac-

ters, we follow the original transformer [1] to design a scene text recognition model in order to

recognize the sequence of characters in the image autoregressively.

Contribution: We also utilize a transformer for scene text recognition with some modification

to its framework without using any rectification module. For this purpose, we leverage a 2D

Learnable Sinusoidal Positional Encoding (2LSPE), in which the frequencies are learned, for

scene text recognition. The proposed framework better captures the 2D spatial information of

irregular-text characters via text-alignment in the image (Chapter 6). We also propose a new feed-

forward-network layer in the encoder module to make it more robust to capturing the features

generated by the encoder’s self-attention mechanism. In addition, we aim to simplify the current

RNN based scene text recognition architectures [27, 64, 65, 67] by leveraging a transformer [98],

and study the effect of the spatial rectification module on the overall recognition accuracy.
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1.3.3 End-to-End Scene Text Detection and Recognition

For a complete text reading, simultaneous text detection and recognition is required. Since text

detection and recognition tasks encounter the same challenging problems (e.g., irregular text,

illumination variations, low resolution text, etc.), we present a new end-to-end transformer that

can detect and recognize text in the image at the same time. Unlike step-wise detection and

recognition, the end-to-end framework will improve the overall speed by eliminating multiple

processing steps. Further, the proposed end-to-end transformer offers higher accuracy than pre-

vious end-to-end CNN-based approaches [60, 100] (Chapter 7).

1.3.4 Masking Auto-encoders for Occlusion Handling

Since we can view the occluded text as a problem in where its elements are masked, one way

to tackle the challenging occluded text problem is to use a masking approach by masking a

large portion of the given input during training and reconstructing the missing pixels. Using

this approach, we can increase the generalization capability of a given classifier by being able to

tackle unseen scenarios. For this purpose, inspired by Masked Autoencoders (MAE) [7], we first

leverage a fine-tuned MAE as a backbone to extract more semantic features in a new end-to-end

scene text spotting framework. We propose a new multi-task prediction head and loss function

that can directly output the class and bounding box coordinates of characters and the bounding

box information of arbitrarily shaped word instances (Chapter 8).

8



Chapter 2

Literature Review

During the past decade, many techniques have been proposed for reading text in images captured

in the wild [43, 47, 64, 69, 77]. The process of interpreting text from images can be divided into

two serial tasks, namely, text detection and text recognition tasks. As shown in Fig. 2.1, text de-

tection aims detecting or localizing text regions from images. On the other hand, text recognition

task only focuses on the process of converting the detected text regions into computer-readable

and editable characters, words, or text-line. In this chapter [101, 102], the conventional and

recent algorithms for text detection and recognition will be discussed.

2.1 Text Detection

As illustrated in Figure 2.2, scene text detection methods can be categorized into classical ma-

chine learning-based [29, 31–33, 41, 69, 80, 103–117] and deep learning-based [44–51, 53,

54, 58, 61, 118] methods. In this section, we will review the methods related to each of these

categories.
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Figure 2.1: General schematic diagram of scene text detection and recognition, where sample
image is from the public dataset in [119].
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Figure 2.2: General taxonomy for the various text detection approaches.

2.1.1 Classical Machine Learning-based Methods

Traditional methods for scene text detection can be categorized into two main approaches, namely,

sliding-window and connected-component based approaches. In sliding window-based methods,

such as [28–33], a given test image is used to construct an image pyramid to be scanned over all

the possible text locations and scales by using a sliding window of certain size. Then, a certain

type of image features (such as histogram of oriented gradients (HOG) [120] as in [31, 121, 122])
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are obtained from each window and classified by a classical classifier (such as random ferns [123]

as in [31] ) to detect text in each window.

Connected-component based methods aim to extract image regions of similar properties (such

as color [34–38, 115], and corner points [124]) to create candidate components that can be cat-

egorized into text or non-text class by using a traditional classifier (such as SVM [107] and

Random Forest [80]). These methods detect characters of a given image and then combine the

extracted characters into a word [69, 107, 111, 116] or a text-line [125]. However, the classical-

machine learning-based methods [33, 69, 107] perform poorly on some challenging cases like

low-contrast images, compact characters and they require complicated rule-based techniques to

generalize well on different arbitrarily shaped text instances [126].

2.1.2 Deep Learning-based Methods

The emergence of deep learning [127] has changed the way researchers approached the text

detection task and has enlarged the scope of research in this field by far. Since deep learning-

based techniques have many advantageous over the classical machine learning-based ones (such

as faster and simpler pipeline [128], detecting text of various aspect ratios [118], and offering

the ability to be trained better on synthetic data [43]) they have been widely used [49, 50, 129].

Table 2.1 summarizes a comparison among some of the current state-of-the-art techniques in this

field.

Recent deep learning-based text detection methods [45–49, 61, 118] inspired by object de-

tection pipelines [3, 9, 10, 73, 74] can be categorized into bounding-box based, segmentation-

based and hybrid approaches as illustrated in Figure 2.2. Bounding-box based methods for

text-detection [44–49, 118] regard text as an object and aim to predict the candidate bound-

ing boxes directly. For example, TextBoxes in [47] modified the single-shot descriptor (SSD)

[10] kernels by applying long default anchors and filters to handle the significant variation of as-
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Table 2.1: Deep learning text detection methods, where W: Word, T: Text-line, C: Character, D:
Detection, R: Recognition, RB: Region-proposal-based, SB: Segmentation-based, ST: Synthetic
Text, IC15: ICDAR15, IC13: ICDAR13, M500: MSRA-TD500, IC17: ICDAR17MLT, and the
rest of the abbreviations used in this table are presented in the list of abbreviation.

Method Year
IF Neural Network Detection

Target
Challenges

Task Code Model
Name

Training Datasets
BB SB Hy Architecture Backbone Quad Curved First-Stage Fine-Tune

Jaderberget al.[44] 2014 – – CNN – W – – D,R – DSOL MJSynth –
Huang et al. [41] 2014 – – CNN – W – – D – RSTD – IC11 or IC15
Tian et al. [45] 2016 3 – Faster R-CNN VGG-16 T,W – – D 3 CTPN PD IC13
Zhang et al. [50] 2016 – 3 FCN VGG-16 W 3 – D 3 MOTD – IC13, IC15 or M500
Yao et al. [51] 2016 – 3 FCN VGG-16 W 3 – D 3 STDH – IC13, IC15 or M500
Shi et al. [118] 2017 3 – SSD VGG-16 C,W 3 – D 3 SegLink ST IC13, IC15 or M500
He et al. [130]. 2017 – 3 SSD VGG-16 W 3 – D 3 SSTD – IC13 or IC15
Hu et al. [131] 2017 – 3 FCN VGG-16 C 3 – D – Wordsup ST IC15 or COCO
Zhou et al. [46] 2017 3 – FCN VGG-16 W,T 3 – D 3 EAST – IC15*, COCO or M500
He et al. [129] 2017 3 – DenseBox – W,T 3 – D – DDR – IC13, IC15 & PD
Ma et al. [49] 2018 3 – Faster R-CNN VGG-16 W 3 – D 3 RRPN M500 IC13 or IC15
Jiang et al. [132] 2018 3 – Faster R-CNN VGG-16 W 3 – D 3 R2CNN IC15 & PD –
Long et al. [53] 2018 – 3 U-Net VGG-16 W 3 3 D 3 TextSnake ST IC15, M500, TOT or CTW
Liao et al. [48] 2018 3 – SSD VGG-16 W 3 – D,R 3 TextBoxes++ ST IC15
He et al. [61] 2018 – 3 FCN PVA C,W 3 – D,R 3 E2ET ST IC13 or IC15
Lyu et al. [59] 2018 – 3 Mask-RCNN ResNet-50 W 3 – D,R 3 MTSpotter ST IC13, IC15 or TOT
Liao et al. [133] 2018 3 – SSD VGG-16 W 3 – D 3 RRD ST IC13, IC15, COCO or M500
Lyu et al. [134] 2018 – 3 FCN VGG-16 W 3 – D 3 MOSTD ST IC13 or IC15
Deng et al.*[54] 2018 3 – FCN VGG-16 W 3 – D 3 Pixellink* IC15 IC13, IC15* or M500
Liu et al.[60] 2018 3 – CNN ResNet-50 W 3 – D,R 3 FOTS ST IC13, IC15 or IC17
Baek et al.*[57] 2019 – 3 U-Net VGG-16 C,W,T 3 3 D 3 CRAFT* ST IC13, IC15* or IC17
Wang et al.*[4] 2019 – 3 FPEM+FFM ResNet-18 W 3 3 D 3 PAN* ST IC15*, M500, TOT or CTW
Liu et al.*[58] 2019 – – 3 Mask-RCNN ResNet-50 W 3 3 D 3 PMTD* IC17 IC13 or IC15*
Xu et al. [135] 2019 – 3 FCN VGG-16 W 3 3 D 3 Textfield ST IC15, M500, TOT or CTW
Liu et al.* [90] 2019 – 3 Mask-RCNN ResNet-101 W 3 3 D 3 MB* ST IC15*, IC17 or M500
Wang et al.* [89] 2019 – 3 FPN ResNet W 3 3 D 3 PSENet* IC17 IC13 or IC15*

Note: * The method has been considered for evaluation.

pect ratios within text instances. With considering that scene text generally appears in arbitrary

shapes, several works have tried to improve the performance of detecting multi-orientated text

[46, 48, 49, 118, 129]. For instance, He et al. [129] proposed a multi-oriented text detection

based on direct regression to generate arbitrary quadrilaterals text by calculating offsets between

every point of text region and vertex coordinates. Later, Liao et al. [48] extended TextBoxes to

TextBoxes++ by improving the network structure and the training process. Textboxes++ replaced

the rectangle bounding boxes of text to quadrilateral to detect arbitrary-oriented text. Although

bounding-box based methods [46–49, 118] have simple architecture, they require complex an-

chor design, hard to tune during training, and may fail to deal with detecting curved text.
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(a) (b)

Figure 2.3: Semantic vs. instance segmentation. Ground-truth annotations for (a) semantic
segmentation, where very close characters are linked together, and (b) instance segmentation.
The image comes from the public dataset in [82]. Note, this figure is best viewed in color format.

Segmentation-based methods in [50–56, 58] cast text detection as a semantic segmentation

problem, which aim to classify text regions in images at the pixel level as shown in Fig. 2.3(a).

These methods, first extract text blocks from the segmentation map generated by a FCN [3]

or mask regional-convolutional neural network (Mask R-CNN) [74], and then obtain bounding

boxes of the text by post-processing. Although these segmentation-based methods [50, 51] per-

form well on rotated and irregular text, they might fail to accurately separate the adjacent-word

instances that tend to connect. To address the problem of linked neighbour characters, Pixellinks

[54] leveraged 8-directional information for each pixel to highlight the text margin, and Lyu [55]

proposed corner detection method to produce position-sensitive score map. Recently, in [89]

a progressive scale expansion network (PSENet) was introduced to find kernels with multiple

scales and separate text instances close to each other accurately. However, the method in [89]

requires a large number of images for training, which increases the run-time and can present

difficulties on platforms with limited resources.

Recently, several works [58, 59, 136, 137] have treated scene text detection as an instance

segmentation problem, as shown in Fig. 2.3(b), and many of them have applied Mask R-CNN
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[74] framework to improve the performance of scene text detection. For example, SPCNET pro-

posed in [137] uses a text context module and a re-score mechanism to suppress false positives.

However, these methods [59, 136, 137] have the following drawbacks: Firstly, they suffer from

the errors of bounding box handling in a complicated background, where the predicted bounding

box fails to cover the whole text image. Secondly, these methods [59, 136, 137] aim at separat-

ing text pixels from the background ones, which can lead to many mislabeled pixels at the text

borders [58].

Hybrid methods [130, 133, 134, 138] use segmentation-based approach to predict score maps

of text and aim as bounding-box based approach to obtain text bounding-boxes through regres-

sion. For example, Liu et al. [58] proposed a new Mask R-CNN-based framework, namely,

pyramid mask text detector (PMTD) for scene text detection, which assigns a soft pyramid label,

l ∈ [0, 1], for each pixel in text instance, and then reinterprets the obtained 2D soft mask into 3D

space.

2.2 Text Recognition

Text recognition converts image regions into characters or words, where character classes in

the English language often consist of: 10 digits, 26 lowercase letters, 26 uppercase letters, 32

ASCII punctuation marks, and 1 end of sentences (EOS) symbol. When the evaluation metric

is case insensitive, only digits and letters are counted, and the rest are removed. However, text

recognition models proposed in the literature have used different choices of character classes,

which Table 2.2 provides their numbers.

Since the properties of text in the wild images are different from the text in scanned docu-

ments, it is challenging to develop an effective text recognition framework based on a traditional

machine learning method, such as [76, 139–143], and applying it on these type of scene text
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images. This is because images captured in the wild tend to include text under various con-

ditions such as images of low resolution [77, 79], lightning extreme [77, 79], environmental

conditions [71, 82], and have different number of potential fonts [71, 82, 83], orientation angles

[72, 83], languages [85] and lexicons [77, 79]. Researchers proposed different techniques to

address these challenging issues, which can be categorized into the classical machine learning-

based [31, 39, 40, 77, 141, 144] and deep learning-based [43, 63–66, 66, 88, 94, 145–154]

methods, which in the rest of this section these two methods are discussed.

2.2.1 Classical Machine Learning-based Methods

In the past five decades, classical machine learning-based scene text recognition methods [39,

40, 106, 109, 141, 155, 156] have used standard image features, such as HOG [120] and SIFT

[157], with SVM [158], k-nearest neighbours [159] classifier, then statistical language models or

visual structure prediction applied to prune-out mis-classified characters [12, 160].

Most classical machine learning-based methods follow a bottom-up approach that classified

characters are linked up into words. For example, in [31, 77], given a cropped word image,

HOG features are first extracted, and then a pre-trained nearest neighbor or SVM classifier is

applied on every feature of sliding window to classify the characters of the input word image.

Other works adopted a top-down approach, where the word is directly recognized from the entire

input images, rather than detecting and recognizing individual characters. For example, Almazan

et al. [161] treated word recognition as a content-based image retrieval problem, where word

image and word labels are embedded into an Euclidean space and the embedding vectors are

used to match images and labels. However, these methods [31, 33, 77, 144] cannot achieve

either an effective recognition accuracy, due to the low representation capability of handcrafted

features, or building models that are able to handle text recognition in the wild. Buttom-up

approach has proper interpretation since they can locate the position and label of each character.
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Table 2.2: Comparison among some of the state-of-the-art of the deep learning-based text recog-
nition methods, where TL: Text-line, C: Character, Seq: Sequence Recognition, PD: Private
Dataset, HAM: Hierarchical Attention Mechanism, ACE: Aggregation Cross-Entropy, and the
rest of the abbreviations are introduced in the list of abbreviation.

Method Model Year Feature Extraction Sequence modeling Prediction Training Dataset Irregular recognition Task # classes Code

Wang et al. [112] E2ER 2012 CNN – SVM PD – C 62 –
Bissacco et al. [33] PhotoOCR 2013 HOG,CNN – – PD – C 99 –
Jaderberg et al. [88] SYNTR 2014 CNN – – MJ – C 36 3

Jaderberg et al. [88] SYNTR 2014 CNN – – MJ – W 90k 3

He et al. [166] DTRN 2015 DCNN LSTM CTC MJ – Seq 37 –
Shi et al. [64] RARE 2016 STN+VGG16 BLSTM Attn MJ 3 Seq 37 3

Lee et al. [145] R2AM 2016 Recursive CNN LTSM Attn MJ – C 37 –
Liu et al. [65] STARNet 2016 STN+RSB BLSTM CTC MJ+PD 3 Seq 37 3

Shi et al. [63] CRNN 2017 VGG16 BLSTM CTC MJ – Seq 37 3

Wang et al. [146] GRCNN 2017 GRCNN BLSTM CTC MJ – Seq 62 –
Yang et al. [147] L2RI 2017 VGG16 RNN Attn PD+CL 3 Seq – –
Cheng et al. [148] FAN 2017 ResNet BLSTM Attn MJ+ST+CL – Seq 37 –
Liu et al. [149] Char-Net 2018 CNN LTSM Att MJ 3 C 37 –
Cheng et al. [150] AON 2018 AON+VGG16 BLSTM Attn MJ+ST 3 Seq 37 –
Bai et al. [151] EP 2018 ResNet – Attn MJ+ST – Seq 37 –
Liao et al. [167] CAFCN 2018 VGG – – ST 3 C 37 –
Borisyuk et al. [66] ROSETTA 2018 ResNet – CTC PD – Seq – –
Shi et al. [27] ASTER 2018 STN+ResNet BLSTM Attn MJ+ST 3 Seq 94 3

Liu et al. [152] SSEF 2018 VGG16 BLSTM CTC MJ 3 Seq 37 –
Xie et al. [153] ACE 2019 ResNet – ACE ST+MJ 3 Seq 37 3

Zhan et al. [94] ESIR 2019 IRN+ResNet,VGG BLSTM Attn ST+MJ 3 Seq 68 –
Wang et al. [154] SSCAN 2019 ResNet,VGG – Attn ST 3 Seq 94 –
Wang et al. [168] 2D-CTC 2019 PSPNet – 2D-CTC ST+MJ 3 Seq 36 –

Note: * This method has been considered for evaluation.

However, its performance is severely confined by the difficulty of character segmentation and

the method usually requires, many labeled training samples for character classifier training (such

as PhotoOCR [33]), which is both expensive and time-consuming [162]. Top-down approaches

also fail in recognition of the input word image outside of the word-dictionary dataset.

2.2.2 Deep Learning-based Methods

With the recent advances in deep neural network architectures [3, 163–165], many researchers

proposed deep learning-based text recognition methods [33, 88, 112] to tackle the challenges of

recognizing text in the wild. Table 2.2 illustrates a comparison among some of the recent state-

of-the-art deep learning-based text recognition methods [27, 63–66, 94, 145–154, 166–168].
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The early deep CNN-based character recognition methods [33, 88, 112] require localizing

each character, which may be challenging due to the complex background, irrelevant symbols,

and the short distance between adjacent characters in scene text images. For word recognition,

Jaderberg et al. [43] conducted a 90k English word classification task with a CNN architecture

Although the [43] showed better word recognition performance in compare to just individual

character recognition methods [33, 88, 112], they have two main drawbacks: (1) these methods

can not recognize out-of-vocabulary words, (2) deformation of long word images may affect

their recognition rate.

Considering that scene text generally appears in the form of a sequence of characters, many of

recent works [63–65, 94, 148, 150–154, 166] map an input sequence to a variable length output

sequence. Inspired by the speech recognition problem, several sequence-based text recognition

methods [63, 65, 66, 145, 146, 152, 166] have used connectionist temporal classification (CTC)

[169] for prediction of character sequences. Fig. 2.4 illustrates three main CTC-based text

recognition frameworks that have been used in the literature. In many works [66, 170], CNN

models (such as VGG [163], RCNN [165] and ResNet [164]) have been used with CTC as shown

in Fig. 2.4(a). For instance, in [66] extracted features from convolutional neural network by are

used to predict the feature sequences. Despite reducing the computational complexity, these

methods [66, 170] suffered the lack of contextual information and showed a poor performance

in terms of scene text recognition accuracy.

For better extracting contextual information, several works [63, 146, 166] used RNN [147]

combined with CTC to identify the conditional probability between the predicted and the target

sequences (Fig. 2.4(b)). For example, in [63] first a VGG model [171] is employed as a backbone

to extract features of input image followed by a bidirectional long-short-term-memory (BLSTM)

[6] for extraction of contextual information and then a CTC loss is applied to identify sequence

of characters. However, these models [63, 146, 166] are insufficient to recognize irregular text,

where characters are arranged on a 2-dimensional (2D) image plane because the CTC-based is
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Figure 2.4: Comparison among some of the recent 1D CTC-based scene text recognition frame-
works, where (a) baseline frame of CNN with 1D-CTC as in Rosetta [66], (b) adding RNN on
the baseline frame as in [63], and (c) adding a Rectification Network on the framework of (b) as
in STAR-Net [65].

only designed for 1-dimensional (1D) sequence to sequence alignment and it is hard to to apply

it on 2D text recognition problem [153]. Furthermore, in these methods, 2D features of image

are converted into 1D features, which may lead to loss of relevant information [168].

To handle irregular input text images, Liu et al. [65] proposed a spatial-attention residue

Network (STAR-Net) that leveraged a spatial transform network (STN) [11] for tackling text

distortions. It is shown in [65] that the usage of STN within the residue convolutional blocks,

BLSTM and CTC framework, shown in Fig. 2.4(c), allowed performing scene text recognition

under various distortions.

The attention mechanism that was first used for machine translation in [172] is also adopted
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for scene text recognition [27, 64, 65, 94, 145, 147, 149, 150]. This technique automatically

learns implicit attention to enhance in-depth features in the decoding process. Fig. 2.5 illus-

trates five main attention-based text recognition frameworks that have been used in the literature.

For regular text recognition, a basic 1D-attention-based encoder and decoder framework, as pre-

sented in Fig. 2.5(a) is used to recognize text images in [145, 173, 174]. For example, Lee and

Osindero [145] proposed a recursive recurrent neural network with attention modeling (R2AM),

where a recursive CNN is used for image encoding in order to learn broader contextual infor-

mation, then an attention-based decoder is applied for sequence generation. However, directly

training R2AM on irregular text is difficult due to the on-horizontal character placement [175].

Similar to CTC-based recognition methods, for handling irregular text many attention-based

methods [27, 67, 93, 94, 149] have used image rectification modules to control distorted text

images as shown in Fig. 2.5(b). For instance, Shi et al. [27] proposed a text recognition system

that combined attention-based sequence and a STN module to rectify text. For this purpose,

in [27, 64], a spatial transformer network (STN) is employed first to rectify the irregular text

(e.g. curved or perceptively distorted), then the text within the rectified image is recognized by

a RNN network. However, training a STN-based method without considering human-designed

geometric ground truth is difficult, especially, in complicated arbitrary-oriented or strong-curved

text images.

The performance of attention-based methods may decline in more challenging conditions,

such as images of low-quality and sever distorted text, which may lead to misalignment and

attention drift problems [168]. To reduce the severity of these problems, Cheng et al. [148]

proposed a focusing attention network (FAN) that consists of an attention network (AN) for

character recognition and a focusing network (FN) for adjusting the attention of AN. It is shown

in [148] that FAN is able to correct the drifted attention automatically, and hence, improve the

regular text recognition performance.
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Figure 2.5: Comparison among some of the recent attention-based scene text recognition frame-
works, where (a), (b) and (c) are 1D-attention-based frameworks used in a basic model [145],
rectification network of ASTER [27], and multi-orientation encoding of AON [150], respectively,
(d) 2D-attention-based decoding used in [176], (e) convolutional attention-based decoding used
in SRCAN [154] and FACLSTM [177].

Some methods [147, 167, 176] used 2D attention [178], as presented in Fig. 2.5(d), to over-

come the drawbacks of 1D attention. These methods can learn to focus on individual character

features in the 2D space during decoding, which can be trained using either character-level [147]

or word-level [176] annotations. For example, Yang et al. [147] introduced an auxiliary dense

character detection task using a fully convolutional network (FCN) for encouraging the learning

of visual representations to improve the recognition of irregular scene text. The overall pipeline

of this method, which uses character level annotation, consist of the following components: a

deep CNN for feature extraction, a FCN for dense character detection and a RNN in the final
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step for recognizing text, where an alignment loss was used to supervise the training of attention

model during word decoding. Later, Liao et al. [167] proposed a framework called Charac-

ter Attention FCN (CA-FCN), which models the irregular scene text recognition problem in a

2D space instead of the 1D space as well. In this network, a character attention module [179]

is used to predict multi-orientation characters in an arbitrary shape of an image. Nevertheless,

this framework requires character-level annotations and cannot be trained end-to-end [59]. In

contrast, Li et al. [176] proposed a model that used word-level annotations, which enables this

model to utilize both real and synthetic data for training without using character-level annota-

tions. Nevertheless, 2-layer RNNs are adopted respectively in both encoder and decoder, which

precludes computation parallelization and suffers from heavy computational burden.

To address these computational cost issue of 2D-attention-based techniques [147, 167, 176],

in [177] and [154] the RNN stage of 2D-attentions techniques were eliminated, and a convolution-

attention network [180] was used instead, enabling irregular text recognition, as well as fully

parallel computation and accelerate the processing speed. Fig. 2.5(e) shows a general block

diagram of this attention-based category. For example, Wang et al. [154] proposed a simple

and robust convolutional-attention network (SRACN), where convolutional attention network

decoder is directly applied into 2D CNN features. SRACN does not require to convert input

images to sequence representations and directly can map text images into character sequences.

End-to-end methods [59–62] usually combine the detection and recognition modules and

train them simultaneously. This approach aims to improve the detection performance by leverag-

ing the recognition module. Unlike two-stage methods (step-wise) [43, 47, 48, 87], which detect

and recognize text in two separate frameworks, the input of end-to-end methods is an image with

ground-truth labels, and the output is a recognized text with its bounding box. For instance, Li

et al. proposed an end-to-end trainable framework that used Faster-RCNN [9] for detection, and

long short term memory (LSTM) attention mechanism for recognition. However, the main draw-

back of this model is that it is only applicable to horizontal text. FOTS [60] introduced RoIRotate
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Table 2.3: Comparison among some of the recent text detection and recognition datasets.

Dataset Year
# Detection Images # Recognition words Orientation Properties Task

Train Test Total Train Test H MO Cu Language Annotation D R

IC03* [76] 2003 258 251 509 1156 1110 3 – – EN W,C 3 3

SVT* [77] 2010 100 250 350 – 647 3 – – EN W 3 3

IC11 [78] 2011 100 250 350 211 514 3 – – EN W,C 3 3

IIIT 5K-words* [79] 2012 – – – 2000 3000 3 – – EN W – 3

MSRA-TD500 [80] 2012 300 200 500 – – 3 3 – EN, CN TL 3 –
SVT-P* [81] 2013 – 238 238 – 639 3 3 – EN W 3 3

ICDAR13* [82] 2013 229 233 462 848 1095 3 – – EN W 3 3

CUT80* [83] 2014 – 80 80 – 280 3 3 3 EN W 3 3

COCO-Text* [84] 2014 43686 20000 63686 118309 27550 3 3 3 EN W 3 3

ICDAR15* [71] 2015 1000 500 1500 4468 2077 3 3 – EN W 3 3

ICDAR17 [85] 2017 7200 9000 18000 68613 – 3 3 3 ML W 3 3

TotalText [72] 2017 1255 300 1555 – 11459 3 3 3 EN W 3 3

CTW-1500 [86] 2017 1000 500 1500 – – 3 3 3 CN W 3 3

SynthText [87] 2016 800k – 800k 8M – 3 3 3 EN W 3 3

MJSynth [88] 2014 – – – 8.9M – 3 3 3 EN W – 3

Note: * This dataset has been considered for evaluation. H: Horizontal, MO: Multi-Oriented, Cu: Curved,
EN: English, CN: Chinese, ML:Multi-Language, W: Word, C: Character, TL: Textline D: Detection, R:
Recognition.

to share convolutional features between detection and recognition module for better detection of

both horizontal and multi-oriented text in the image. End-to-end text detection and recognition

methods benefit the recognition results for improving the precision of detection, and some of

these methods achieved superior performances in horizontal and multi-orientation text datasets.

However, the high-performance detection of arbitrary-shape text such as curved or irregular text

is still an open research problem.

2.3 Benchmark Datasets

In the field of text detection and recognition, several datasets have been introduced [71, 72, 76–

88].

The two synthetic datasets, including Synth-Text [87] and MJ-Synth [88] datasets, are only

used for pre-training of text detection and recognition models. There are also real-world datasets
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(a) SynthText (b) MJ

Figure 2.6: Sample images of synthetic datasets are mainly used for pre-training of (a) text de-
tection and (b) recognition models in the wild. Images are taken from publicly available datasets
in [87, 88]. All the above images are taken from publicly available benchmark datasets.

utilized extensively for evaluating the performance of detection schemes. We can categorize

these datasets as follows:

1. Horizontal-text datasets: including ICDAR13 [82] and Coco-Text [119], which are an-

notated using rectangular bounding boxes. Some images of this datasets are shown in

Figure 2.7.

2. Multi-oriented text datasets: including ICDAR15 [71], ICDAR17 [85], and MSRA-

TD500 [181] that are annotated with quadrilateral and rotated-rectangle bounding boxes.

Figure 2.8 illustrates some sample images of this datasets.

3. Arbitrarily-shaped text datasets: including Total-Text [72] and CTW-1500 [86] that

mainly have curved and irregular text instances with multiple-vertices of polygon anno-

tation. We have shown some images of these datasets in Figure 2.9.

There are also cropped-word datasets [71, 76, 77, 79, 81–84] designed to evaluate the scene text

recognition algorithms. These datasets can be categorized into regular-text and irregular-text

datasets, as shown in Figure 2.10. Table 2.3 also compares some of the recent text detection and

recognition datasets, and the rest of this section presents a summary of each of these datasets.
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2.3.1 MJSynth

The MJSynth [88] dataset is a synthetic dataset that specifically designed for scene text recogni-

tion. This dataset includes about 8.9 million word-box gray synthesized images, which have been

generated from the Google fonts and the images of ICDAR03 [182] and SVT [77] datasets. All

the images in this dataset have annotated in word-level ground-truth and 90k common English

words have been used for generating of these text images.

2.3.2 SynthText

The SynthText in the Wild dataset [183] contains 858,750 synthetic scene images with 7,266,866

word-instances, and 28,971,487 characters. Most of the text instances in this dataset are multi-

oriented and annotated with word and character-level rotated bounding boxes, as well as text

sequences They are created by blending natural images with text rendered with different fonts,

sizes, orientations and colors. This dataset has been originally designed for evaluating scene

text detection [183], and leveraged in training several detection pipelines [57]. However, many

recent text recognition methods [27, 94, 150, 153, 168] have also combined the cropped word

images of the mentioned dataset with the MJSynth dataset [88] for improving their recognition

performance.

2.3.3 ICDAR03

The ICDAR03 dataset [182] contains horizontal camera-captured scene text images. This dataset

has been mainly used by recent text recognition methods, which consists of 1,156 and 110 text

instances for training and testing, respectively. In this work, we have used the same test images

of [67] for evaluating the state-of-the-art text recognition methods.
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Figure 2.7: Example images of (a) ICDAR13 [82], and (b) Coco-Text [119] datasets that have
rectangular bounding box annotations. All the above images are taken from publicly available
benchmark datasets.

2.3.4 ICDAR13

The ICDAR13 dataset [82] includes images of horizontal text (the ith groundtruth annotation

is represented by the indices of the top left corner associated with the width and height of a

given bounding box as Gi = [xi1, y
i
1, x

i
2, y

i
2]> that have been used in ICDAR 2013 competition

and it is one of the benchmark datasets that used in many detection and recognition methods

[46, 54, 57, 58, 60, 63–65, 67, 93]. The detection part of this dataset consists of 229 images for

training and 233 images for testing, recognition part consists of 848 word-image for training and

1095 word-images for testing. All text images of this dataset have good quality and text regions

are typically centered in the images.
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2.3.5 COCO-Text

This dataset firstly was introduced in [84], and so far, it is the largest and the most challenging text

detection and recognition dataset. As shown in Table 2.3, the dataset includes 63,686 annotated

images, where the dataset is partitioned into 43,686 training images, and 20,000 images for

validation and testing. In this work, we use the second version of this dataset, COCO-Text, as

it contains 239,506 annotated text instances instead of 173,589 for the same set of images. As

in ICDAR13, text regions in this dataset are annotated in a word-level using rectangle bounding

boxes. The text instances of this dataset also are captured from different scenes, such as outdoor

scenes, sports fields and grocery stores. Unlike other datasets, COCO-Text dataset also contains

images with low resolution, special characters, and partial occlusion.

2.3.6 ICDAR15

The ICDAR15 dataset [71] can be used for assessment of text detection or recognition schemes.

The detection part has 1,500 images in total that consists of 1,000 training and 500 testing im-

ages for detection, and the recognition part consists of 4468 images for training and 2077 im-

ages for testing. This dataset includes text at the word-level of various orientation, and cap-

tured under different illumination and complex backgrounds conditions than that included in

ICDAR13 dataset [82]. However, most of the images in this dataset are captured for indoors

environment. In scene text detection, rectangular ground-truth used in the ICDAR13 [82] are

not adequate for the representation of multi-oriented text because: (1), they cause unnecessary

overlap. (2), they can not precisely localize marginal text, and (3) they provide unnecessary noise

of background [184]. Therefore to tackle the mentioned issues, the annotations of this dataset

are represented using quadrilateral boxes (the ith groundtruth annotation can be expressed as

Gi = [xi1, y
i
1, x

i
2, y

i
2, x

i
3, y

i
3, x

i
4, y

i
4]> for four corner vertices of the text).
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(a) ICDAR15 (b) ICDAR17 (c) MSRA-TD500

Figure 2.8: Sample images of (a) ICDAR15 [71], (b) ICDAR17 [85] , and (c) MSRA-TD500
[181] datasets that are used for evaluation of multi-oriented text detection frameworks. All the
above images are taken from publicly available benchmark datasets.

2.3.7 ICDAR17

The ICDAR17 dataset is a large-scale word-level multi-lingual text dataset [85] comprised of

18000 natural scene images, sorted into 7200 for training, 1800 for validation and 9000 for

testing. Similar to ICDAR15, This dataset also uses quadrilateral annotations [71], which we

convert to our proposed rotated boxes format with the same procedure described in the preceding

paragraph. It is noteworthy to mention that ICDAR17 is more challenging than ICDAR15 due to

the varying text instances sizes, and the abundance of tiny text instances.

2.3.8 Total-Text

Total-Text [72] is a popular arbitrary-shaped text dataset that contains a large amount of curved

text and straight text. Most of the images of the Total-text [72] dataset mainly contain irregular

text while guarantee that each image has at least one curved text. The text instance is annotated

with polygon based on word-level with only English words.
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Figure 2.9: Arbitrarily-shaped text sample images of (a) Total-Text [72] and (b) CTW-1500 [86]
benchmark datasets used for evaluating the peformance ”scent text detection” and ”end-to-end
scene text detection and recognition” models. All the above images are taken from publicly
available benchmark datasets.

2.3.9 CTW-1500

The CTW1500 [86] dataset is also an arbitrary shape text detection dataset contains both En-

glish and Chinese text. Annotation in this dataset is based on the text-line level, in which poly-

gons annotate every text instance with 14 vertices. Some text instances in this dataset include

document-like text, in which much small text is close and stack together [100].

2.3.10 SVT

The Street View Text (SVT) dataset [77] consists of a collection of outdoor images with scene text

of high variability of blurriness and/or resolutions, which were harvested using Google Street

28



View. As shown in Table 2.3, this dataset includes 250 and 647 testing images for evaluation of

detection and recognition tasks, respectively. We utilize this dataset for assessing the state of the

art recognition schemes.

2.3.11 SVT-P

The SVT - Perspective (SVT-P) dataset [81] is specifically designed to evaluate recognition of

perspective distorted scene text. It consists of 238 images with 645 cropped text instances col-

lected from non-frontal angle snapshot in Google Street View, which many of the images are

perspective distorted.

2.3.12 IIIT 5K-words

The IIIT 5K-words dataset contains 5000 word-cropped scene images [79], that is used only for

word-recognition tasks, and it is partitioned into 2000 and 3000 word images for training and

testing tasks, respectively. In this work, we use only the testing set for assessment.

2.3.13 CUT80

The Curved Text (CUT80) dataset is the first dataset that focuses on curved text images [83].

This dataset contains 80 full and 280 cropped word images for evaluation of text detection and

text recognition algorithms, respectively. Although CUT80 dataset was originally designed for

curved text detection, it has been widely used for scene text recognition [83].
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IIIT-5K SVT ICDAR03 ICDAR13 ICDAR15 SVTP CUT80 COCOTEXT

Figure 2.10: Sample cropped word images of benchmark datasets used for scent text recognition.
The irregular-text datasets (left) [76, 77, 79, 82] mainly contain horizontal text, and irregular-text
datasets (right) [71, 81, 83, 84] consist of primarily oriented, curved, and distorted text instances.
All the above images are taken from publicly available benchmark datasets.

2.4 Summary

In the present Chapter, we have presented a detailed review on the recent advancement in scene

text detection and recognition fields with focus on deep learning based techniques and archi-

tectures. We first have highlighted the related work done for scene text detection, which can be

divided into three main categories: (1) bounding-box methods that mostly deployed object detec-

tion frameworks. while these methods provide good performance for regular text detection, their

performance decline on irregular text. (2) segmentation-based methods, provide more robust in

predicting the location of irregular text than the previous approaches. (3) Hybrid bounding box

and segmentation based methods that are able to handle better multi-oriented text. However,

scene text detection methods require fine-tuning on real-world datasets, and in images with text

affected by more than one challenge, all these categories performed weakly.

We then have covered scene text recognition methods into two main categories: attention-

based methods and CTC-based methods. In general, attention-based methods, that benefit from a

deep backbone for feature extraction and transformation network for rectification have performed

better than that of CTC-based methods. Scene text recognition methods often use synthetic scene

images for training, and they can recognize text in real-world images without fine-tuning their
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models. However, there are several unsolved challenges for detecting or recognizing text in

the wild images, such as in-plane-rotation, multi-oriented and multi-resolution text, perspective

distortion, shadow and illumination reflection, image blurriness, partial occlusion, complex fonts,

and special characters. The state-of-the-art detection and recognition methods fail or perform

poorly with these challenges.

In the next chapter (Chapter 3), we provide some related background theory to the standard

transformer’s architecture introduced in [1]. We leverage this framework mainly for scene text

recognition in Chapter 6. We also explore the recent Detection Using Transformers (DETR)’s

pipeline [96], which is our baseline architecture for text detection in Chapter 4 and Chapter 5.
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Chapter 3

Background Theory

This chapter covers the essential fundamental background related to the transformer pipeline. We

later (Chapter 4), leverage this network as our main framework for text detection and recognition

in wild images.

3.1 Attention

In this section, we define attention, which is the key defining part of a transformer models [1].

attention can be categorized into two types: self attention and cross attention (§3.2.1.2).

The self-attention layer is a normal attention block that allows the model to learn and access

information of the past hidden layers. Let x = [x1, x2, ..., xt]
> ∈ Rt×d, within t and d denote the

length and dimension of the input sequence. Each row of the self-attention function A1(x) can

be demonstrated as a weighted sum of the value matrix V ∈ Rt×d, with the weights determined

by similarity scores between the key matrix K ∈ Rt×d and query matrix Q ∈ Rt×d as follows
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[1, 185]:

A1(x) = Softmax
(QK>√

d

)
V,

Q = [q1, q2, ..., qt]
>, qi = Wqxi + bq,

K = [k1, k2, ..., kt]
>, ki = Wkxi + bk,

V = [v1, v2, ..., vt]
>, vi = Wvxi + bv,

(3.1)

where W(q/k/v) and b(q/k/v) are the weight and bias parameters introduced in A1(·).

As seen in Figure 3.1, rather than only computing the attention once, the multi-head mech-

anism runs through the scaled dot-product attention in equation (3.1) multiple times in parallel

(more details in §A.3).

3.2 Transformer

Transformer’s architecture has been initially introduced in [98] for machine translation by us-

ing a new attention-based mechanism. This architecture introduces self-attention layers, which

scan through each element of a sequence and update it by measuring the relationship between

this element and the whole sequence [98]. The main advantages of attention-based models in

transformer are their parallel computations suitability at lower memory cost, which makes them

more suitable than recurrent neural networks (RNNs) [6, 75] on learning from long sequences.

This transformer architecture [98] has been later exploited in natural language processing (NLP)

[186, 187] and it has been recently integrated in several successful applications in speech recog-

nition [188] and computer vision [189–191].
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Figure 3.1: The standard Architecture of transformer. The diagram is reproduced from [1].

3.2.1 Transformer’s Architecture

Transformer follows a similar architecture to autoencoder [192]; As shown in Figure 3.1, It

consists of two major blocks: encoder and decoder, which without residual connections and

layer normalization (Add-Norm), the architecture of a simplified transformer encoder/decoder

can be seen as a stack of N sub-blocks Bn : n = 1, . . . , N containing a self-attention An(·), a

FFN layer Fn(·), and a position encoding PE. Each sub-block Bn for a set of input x = {xi}ti=1

can be expressed as follows [185]:

Bn(x) = Fn ◦ An ◦ PE (x) (3.2)
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3.2.1.1 Encoder

The Encoder module in the transformer, as shown in Figure 3.2a, accepts a set of inputs ({xi}ti=1)

at the bottom and then passes them through a Multi-Head Self-Attention (MHSA) followied by

a Add & Norm and then a Feed-Forward-Neural network (FFN) layer. The output is then fed to

another Add & Norm sub-block, which outputs a set of hidden representation as {hEnc
i }ti=1. After

adding 1D positional encodings to x (more details in §A.4), the self-attention sub-block takes

the same item of the sequential inputs by generating the query, key, and values and weighs their

relevance to each other to generate a set of output encodings, which are later fed through the

rest of the encoder (more detail in §3.1). The Add, Norm sub-block in encoder module has two

components: addition (residual connection) and layer normalization(LayerNorm), which can be

written as follows x = LayerNorm
(
x + Fs(x)

)
, where FS is the sub-layer module. It can be

either the multi-headed self-attention or the feed-forward layer [193]. Following this step, The

FFN sub-block is just applying a single multi-layer perceptron to every component in the set,

which it later is used to adjust the dimensions of the output hEnc
i . More specifically, the output of

the feed-forward F1(·) is a matrix with t rows, which the i-th row of it can be expressed as:

F1(x) = W2σ(W1xi + b1) + b2, (3.3)

where W1,2 and b1,2 refer to the weights and biases of linear transforms, and σ(·) denotes the

activation function.

3.2.1.2 Decoder

The decoder module in a transformer performs similarly to the encoder, which is querying of

what is required through the set of representations from the encoder. However, as shown in

Figure 3.2b, this module’s inputs are different, and one extra sub-block exists in the middle,
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Figure 3.2: Modules of the transformer. The diagram is reproduced from [1].

which is called cross-attention that connected after the self-attention following by an Add, Norm

sub-block. The cross-attention sub-block follows the same query, key, and value setup used for

the self-attention layer in encoder module, but the only difference is that it accepts the hidden

representation (hEnc
i ) from the outputs of last layer of the encoder.

3.2.2 Transformer for Object Detection

Recently, in [96], a transformer’s architecture [98] is utilized for object-detection and achieved

superior results under challenging conditions. The novel design in the proposed architecture in

[96] alleviates the need to use post-processing, reduces the need for anchor design to calculate

the final object detection and improves the efficiency of target detection. Utilizing the trans-

former allowed this detector to work well on out-of distribution examples, and has offered a

good performance on objects of various resolutions and affected by partial occlusion [96].
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Figure 3.3: Overall Framework of object detection using transformer. See §A.2.1 for more detail.
The above framework is reproduced from [96].

3.2.2.1 Architecture

The architecture for object detection using transformer [96] follows the similar standard pipeline

of the transformer in [1] as shown in Figure 3.3. In this architecture, First, the input image is fitted

to CNN to get image features. Then 2D positional embeddings made of sinusoids at different

frequencies are added to the queries and keys of attention modules because the MSHA block

in the transformer is permutation equivariant. For decoding, a fixed set of learned embeddings

called object queries is passed through a transformer decoder. Finally, the obtained set of feature

vectors are fed to shared FFN layers that predict the class and bounding box for each query.

Object Queries: Unlike other object-detection frameworks [9, 10, 73], the architecture object

detection using transformer [96], does not manually incorporate any geometric prior for detec-

tion. Instead, the model learns it directly from data by using object queries. Object queries are N

randomly initialized embedding vectors that they first are refined during training and then fixed

for evaluation.

Set Prediction Loss: Set prediction loss introduced in [96] generates an optimal bipartite match-

ing among the predicted and ground-truth objects. DETR [96] uses bipartite matching for one-vs-

one matching between predictions and ground truth boxes rather than matching multiple bound-
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ing boxes to one ground truth box used in many object detection methods [9, 73]. The mentioned

model always outputs N number of predictions, which the value of N is set larger than the num-

ber of objects in the image. The number of ground truth objects can be smaller than N , so

dummy empty labels are added before performing the matching process.

Let y denotes the ground truth set of objects and ŷ the set of N predictions, the loss function

finds best possible one-to-one match between the ground truth and prediction pairs that minimize

the loss , which it computes the optimal assignment between prediction and ground truth objects

as [96]:

σ̂ = arg min
σ∈SN

N∑
i

Lmatch(yi, ŷσ(i)), (3.4)

where Lmatch(yi, ŷσ(i)) denotes pairwise matching cost between ground truth set yi and prediction

set ŷσ(i). The model always outputs a set of prediction as ci, bi for each element i of N object

queries, where ci is the target class label, which can be ∅ for no-object class, and bi is a rect-

angular bounding box in the format of four vector of bi = [xi, yi, wi, hi], where x, y denotes the

up-left point and w, h are the width and height of the bounding box ,respectively.

The Bipartite matching loss between the ground truth and predicted is designed based on

Hungarian algorithm [194], which determines the optimal assignment between ground truth and

prediction. The Hungarian loss of equation (8.1) can be defined as follow:

LHungarian(y, ŷ) =
N∑
i=1

[
− log p̂ ˆσ(i)(ci) + 1{ci=∅}Lbox(bi, b̂σ̂(i))

]
(3.5)

where σ̂ denotes the optimal assignment. The loss is defined similarly to the losses of common

object detectors [96]. The model also includes bounding box loss, Lbox, which is defined as a

linear combination of the `1 loss (||bi − b̂i||1) and generalized IOU loss (LGiou) [96]:

Lbox(bi, b̂i) = λGiouLGiou(bi, b̂i) + λL1||bi − b̂i||1 , (3.6)
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and λGiou, λL1 ∈ R are hyperparameters, and the generalized IOU loss [195] can be defined as:

LGiou(bi, b̂i) = 1−
(
|bi ∩ b̂i|
|bi ∪ b̂i|

− |B(bi, b̂i) \ bi ∪ b̂i|
|B(bi, b̂i)|

)
. (3.7)

and B(bi, b̂i) means the largest box containing bi and b̂i.

3.3 Summary

This chapter has presented the core information needed to understand the fundamentals behind

transformer, which they are the main components that we utilize for our proposed scene text

detection (Chapter 4 and Chapter 5), scene text recognition (Chapter 6), end-to-end scene text

spotting (Chapter 7), and occluded text reading (Chapter 8) frameworks. We first have explored

the fundamental theory behind the self-attention, the main block of transformer, and also sum-

marized other sub-block of transformer’s architecture. Then, we have explained the background

information of a specific transformer architecture used for object detection.

In Chapter 4, we utilize the DETR’s framework [96], discussed in this Chapter, for designing

a conceptually more straightforward and trainable end-to-end text detection architecture. Since

the rotated text is abundant in “in the wild” images, our main focus in the following Chapter is on

detecting only multi-oriented text instances. We also discuss why we leverage the transformer’s

architecture for irregular text detection in wild images.
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Chapter 4

Transformer-based Text Detection in the

Wild

A major limitation of most state-of-the-art visual localization methods is their incapability to use

ubiquitous signs and directions that are typically intuitive to humans. Localization methods can

significantly benefit from a system capable of reasoning about various cues beyond low-level

features, such as street signs, store names, building directories, room numbers, etc.

In this work, we tackle the problem of text detection in the wild, an essential step towards

achieving text-based localization and mapping. While current state-of-the-art text detection

methods employ ad-hoc solutions with complex multi-stage components to solve the problem,

we propose a transformer-based architecture inherently capable of dealing with multi-oriented

texts in images. A central contribution to our work is the introduction of a loss function tailored

to the rotated text detection problem that leverages a rotated version of a generalized intersection

over union score to properly capture the rotated text regions.

We evaluate our proposed model qualitatively and quantitatively on several challenging datasets

namely, ICDAR15, ICDAR17, and MSRA-TD500, and show that it outperforms current state-
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of-the-art methods in text detection in the wild.

4.1 Introduction

Visual localization has played an essential role in recent advancements of several technologies

such as augmented reality, self-driving cars and autonomous robotic navigation. However, most

localization methods rely on low-level information (corners, edges, etc.) that does not necessarily

correlate to topologically meaningful map representations [196]. Therefore, the next generation

visual localization methods should be able to understand their surroundings and make use of

the ubiquitous navigation labels surrounding them to navigate through previously unexplored

environments. This is where text detection in the wild can play an important role as it enables

image-based localization methods to reason about the ubiquitous navigation labels surrounding

them to navigate through unexplored environments. However, texts can have several fonts, dif-

ferent colors, can appear on various surfaces, in different locations in the image, and with a wide

range of orientations and scales [14, 101]. For example, they can appear anywhere from building

names, store fronts, street signs, to shopping mall signs, etc. Therefore, reliable and consistent

text detection is of utmost importance.

At its core, text detection is the process of localizing a word or a sentence in a given image. To

that end, several recent scene text detection methods [46, 48, 49, 57, 58, 197, 198] have utilized

deep convolutional neural networks (DCNNs) as feature extractors [9, 10, 73, 74], and solved for

text detection by casting it as an object detection problem. Despite achieving promising results

on various challenging datasets [71, 85, 181], their performance is still lacking in several key

challenging scenarios, including and not limited to in-plane-rotations, multi-oriented and multi-

resolution text, complex fonts, special characters, perspective distortion, occlusions, shadows,

illumination artifacts, and image blurriness [101, 199]. We attribute these shortcomings to the
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ad-hoc multi-layered approaches most of these methods have deployed in an attempt to model

the wide range of variation texts can have in the wild.

As such, we propose to account for these variations within our model, by leveraging the

power of the transformers [1], which is a recent deep learning architecture that learns how to

encode and decode data by looking not only backward but also forward to extract relevant infor-

mation from a whole sequence. This new approach allows models to solve for complex tasks,

such as machine translation [1], speech recognition [200], and recently, object detection [96, 201]

and scene text recognition [202, 203].

In this work, we leverage a transformer framework to detect text instances in wild images.

Unlike the baseline transformer-based method in [96, 201] that only generates rectangular bound-

ing boxes for detected objects, and therefore, it is not designed for handling arbitrary shape de-

tection; we propose a new architecture that is able to detect multi-oriented text. Our contributions

are as follows:

1. We improve the detection performance by using the transformer [96] architecture, and by

leveraging a differentiable loss function that accepts text instances’ arbitrary shapes.

2. We propose using a rotated text representation that can better represent multi-oriented

text regions.

3. We validate the performance of the proposed method by conducting several quantitative

and qualitative experiments on challenging scenarios, and show that the proposed method

outperforms the state-of-the-art on three public benchmark datasets, namely, ICDAR15

[71], ICDAR17 [85], and MSRA-TD500 [181].

4.2 Related Work

Text detection methods can be broadly categorized into two main groups:
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1. First, segmentation-based methods [4, 54, 57, 58, 89] mainly use Mask-RCNN [74] as a

backbone to produce a segmentation mask. They also consist of additional segmentation

heads alongside the detection bounding box. Although these methods [4, 54, 57, 58, 89]

offer high-precision detection when text is horizontal, they usually require multiple post-

processing steps to infer the produced segmentation mask and predict precisely oriented

bounding boxes [198]. Furthermore, their complicated architectures usually require high

inference time due to the refinement of region proposal and label generation for arbitrary

oriented text prediction.

2. On the other hand, region-based methods [46, 48, 129, 133, 134, 197–199] often predict

candidate bounding box directly for the target region of interest. Unlike segmentation-

based methods, region-based methods are more straight-forward and efficient for predict-

ing the target region. However, applying the standard object detection frameworks di-

rectly for detecting arbitrarily-oriented text may cause redundant background noise, and

unnecessary overlap [197]. Thus, for more accurate detection, many methods adopted

rotated bounding boxes approach to better represent oriented text as in [46, 48, 49, 197,

198].

Particularly, EAST [46] presented a fast text detector that makes dense predictions which are

then processed using locality-aware non-maximum suppression (NMS) to detect multi-oriented

texts in an image. Later, TextBoxes++ [48] improved the rectangular detection architecture

by using a long convolution kernel, increasing the number of region proposals, and replacing

the rectangle bounding boxes of text with rotated boxes in order to detect arbitrarily-oriented

text. In [197], Deng et al. introduced a mechanism called STELA for learning anchors and

making the two-stage framework of Faster-RCNN into a one-stage detector to make the final

oriented text detection more efficient. Recently, Wang et al. proposed RYOLO [198] that in-

corporated angle information of rotated boxes and feature maps of different scales to extend the

standard YOLO framework for detecting rotated text. Although some of the mentioned methods
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Figure 4.1: Block diagram of the proposed text-detection scheme using a transformer. Unlike the
framework in [96], the proposed framework aims to represent text regions utilizing quadrilateral-
based predictions instead of the classical rectangular-based predictions used in [96].

[197, 198] achieved state-of-the-art performance on several benchmark datasets, they require a

complicated architecture with multiple stages of post-processing like NMS and rotating anchor

design.

4.3 Methodology

Our main goal is to address the challenges of multi-oriented scene text detection by propos-

ing a modified transformer-based architecture [96]. Transformers [1] are attention-based deep-

learning architectures that can scan through each element of a sequence using a self-attention
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module, and provide an update by aggregating information from the whole sequence. When

compared to previous deep-learning approaches, transformers can better capture the global de-

pendencies among the input and output sequences with the help of an attention mechanism [204].

During training, the encoder’s multi-head self-attention layer learns how to separate individual

words in the scene image by performing the global computations, whereas the decoder learns

how to attend to different characters in words by using different learnable vectors (also referred

to as object queries). This is a very important feature since when properly trained, the last layer

of the decoder is capable of directly predicting the targets’ location without the need for mul-

tiple post-processing steps, as mentioned in Section 5.2, which are typically required by other

architectures [46, 48, 57, 58, 90, 197, 198].

4.3.1 Architecture

The overall architecture of the proposed text detection scheme is shown in Figure 4.1. During

the encoding phase, the ith training color image Ii ∈ RH0×W0×3 is first processed to extract

its features. While there are several ways of extracting features from an image such as RCNN

[205], YOLO [73] etc., we choose a ResNet [164] as CNN backbone because of its parameter

efficiency and its ability in handling the vanishing gradient problem. The CNN produces a corre-

sponding lower resolution feature map Fi ∈ RH×W×c, where c indicates the number of channels,

H = H0/η, and W = W0/η with η being the downsampling factor. In order to reduce the

computational cost of the encoding stage, the number of channels within the feature map Fi, are

reduced using a 1× 1 convolutional layer, resulting in F ′i ∈ RH×W×d, where d < c.

As in [1], we also make use of 2D positional encoding maps P ∈ RH×W×d, which are added

to F ′i such that F ′′i = F ′i + P . The positional encoded map F ′′i , allows the multi-head self-

attention layer to better capture the 2D spatial information. Since, the encoder in the transformer

only accepts a set of vectors as input, the d channels of F ′′i are vectorized and stacked to form
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one feature matrix Ei of the form:

Ei =


ei,1

ei,2
...

ei,d

 ∈ Rd×HW , (4.1)

with the vector ei,j = Mat2Vec(F
′′
i (:, :, j)) ∈ 1 × HW , and Mat2Vec is a matrix to vector

converter.

The standard encoder of transformer with N = 6 layers [1] is then used to generate the ith

encoded feature matrix Êi ∈ Rd×HW . This encoder also includes a multi-head self-attention and

FFN layers. The multi-head self-attention mechanism in the transformer’s encoder allows the

model to handle the scale differences in text instances [201].

In the decoding phase, as in [96] the encoded feature matrix Êi, along with a fixed set of

learnable embeddings, called object queries Q ∈ RNq×HW , are passed through a transformer

decoder of M = 6 layers, where Nq denotes the maximum number of text instance queries

that can appear in each input image, and Q = [q>1 , . . . , q
>
Nq

]> such that the kth vector qk is of size

1×HW . The decoded set of feature vectors Q̂ ∈ RNq×HW is then fed into the FFN layers, which

consists of a three layer perceptron with a ReLU activation function plus a d-dimensional hidden

layer, and a linear projection layer to predict the bounding box and class label for each query.

Finally, a bipartite matching [194] is used at the end to predict the loss between the predicted and

ground-truth text instances.

46



4.3.2 Rotated Scene Text Representation

Rectangular bounding boxes [47] (shown in Figure 5.1-a), of the form b′ = [x, y, w, h]>, are

considered the simplest representation of a localized horizontal text region, where (x, y) are

the center point coordinates, and w and h are the box’s width and height, respectively. Unfor-

tunately, this representation falls short when dealing with irregular text regions [101] as (a) it

limits the ability of a given detector to distinguish between overlapped or nearby text regions,

and (b) it includes many irrelevant background areas that can affect the detector’s loss function

during training, and can generate noisy regions that might hinder subsequent analysis, i.e., text

recognition.

To address these limitations, several works [46, 48, 49, 60, 129, 133, 134, 197–199] have

used a rotated bounding box representation as shown in Figure 5.1-b. In this work, we also adopt

a rotated rectangular-bounding boxes representation that embeds the box orientation angle, θ,

within the box description as:

b = [x, y, w, h, cos(θ), sin(θ)]> (4.2)

where θ ∈ [−90◦, 90◦).

4.3.3 Loss Function

To allow the transformer architecture to predict the orientation of a text region, we propose a loss

function tailored to the task at hand.

Unlike [96], which uses a generic Generalized Intersection over Union (GIoU) with `1-

regression [195] (shown in Figure 4.3-a), we propose a rotated-box-based GIoU loss (shown

in Figure 4.3-b), along with a Smooth-ln regression based loss to properly handle rotated texts
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(a) Rectangle bounding box (b) Rotated Rectangle bounding box

Figure 4.2: Illustrations of different techniques for representing bounding boxes for scene text
detection. The above images are reproduced from public dataset [72].
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as follows.

Let b̂i and bj denote the ith predicted and jth ground truth bounding boxes, respectively, then

we define our loss function as:

Lrbox(b̂i, bj) = λ1Lrreg(b̂i, bj) + λ2LrGIoU(b̂i, bj) (4.3)

where λ1 and λ2 ∈ R are hyper-parameters, and Lrreg(·) and LrGIoU(·) are the rotated box based

loss functions that will be introduced in equation (7.3) and equation (5.7), respectively.

Smooth-ln based Regression Loss: It is used in computing Lrreg(.) from equation (7.1) as it was

found to be more efficient in arbitrary scene text detection than the Smooth-`1 loss [206], and

is also capable of resisting more outliers, and adjusting the regressive steps [184]. As such, our

adopted regression loss is defined as:

Lrreg(b̂i, bj) = (|∆bij|+ 1) ln(|∆bij|+ 1)− |∆bij| (4.4)

where ∆bij = b̂i − bj and | · | denotes the absolute operator.

Rotated Box based GIoU Loss: As it was shown in [96], the GIoU loss has a significant impact

on the detection performance. In our model, the GIoU loss between the ith predicted and jth

ground truth boxes, b̂i and bj respectively, is computed as:

Lrgiou(b̂i, bj) = 1− GIoU(b̂i, bj). (4.5)

However, unlike [195] that uses a rectangular bounding box representation for the GIoU loss

computation, we use a rotated bounding box representation that better fits text regions. The

49



(a) (b)

(x1, y1) (x2, y2)

(x3, y3)(x4, y4)

(x′ 2, y
′ 2)

(x′ 3, y
′ 3)

(x′ 4, y
′ 4)

(x′ 1, y
′ 1)

(x, y)
θ

w

h

(u 1, v 1) (u 2, v 2) (u 3, v 3)

(u 4, v 4)

(u 5, v 5)(u 6
,v 6

)

(x1, y1) (x2, y2)

(x3, y3)(x4, y4)

(x′ 2, y′ 2)

(x′ 3, y′ 3)(x′ 4, y′ 4)

(x′ 1, y′ 1) w

h
(u1, v1) (u2, v2)

(u3, v3)(u4, v4)

(c) (d)

Figure 4.3: Examples of the intersection (highlighted in orange) and convex hull (highlighted in
grey) computation for horizontal boxes (a) and (c), and for rotated boxes (b) and (d). Note that
computing the area of intersection between two rotated bounding boxes can be more complex
than the horizontal case.
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GIoU for two arbitrarily rotated boxes b̂i, bj ⊆ S ∈ Rn is defined as:

GIoU(b̂i, bj) =IoU(b̂i, bj)−
Area(C\(b̂i∪bj))

Area(C)
(4.6)

with IoU(b̂i, bj) =
Area(b̂i ∩ bj)
Area(b̂i ∪ bj)

, (4.7)

andC denotes the smallest convex hull area that encloses both boxes b̂i and bj , and Area(·) is the

area of a set. As illustrated in orange in Figure 4.3-b, the overlapping region of two rotated boxes

constructs a polygon (p). In the next section, we will describe how we compute the different

terms of Equations equation (5.7), equation (5.8) and equation (5.9).

4.3.4 Implementation Details

Computing the term Area(b̂i ∪ bj) in equation (5.8) and equation (5.9): In order to calculate

the area of an arbitrarily rotated box, b, we first obtain the corners of the box using its centered

representation, i.e., b = [x, y, w, h, cos(θ), sin(θ)]>, as follows [207]:

x1 =x+
−wc0 + hs0

2γ
, y1 =y +

−ws0 − hc0

2γ
,

x2 =x+
wc0 + hs0

2γ
, y2 =y +

ws0 − hc0

2γ
,

x3 =x+
wc0 − hs0

2γ
, y3 =y +

ws0 + hc0

2γ
,

x4 =x+
−wc0 − hs0

2γ
, y4 =y +

−ws0 + hc0

2γ
. (4.8)

where {(xi, yi), i = 1, ..., 4} are the coordinates of the box corners in counterclockwise direction

(Figure 4.3), γ =
√
c2

0 + s2
0, and c0 and s0 are cos (θ) and sin (θ), respectively. Now, the area of
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a box can be computed as follows:

Area(b) =
√

(x2 − x1)2 + (y2 − y1)2×√
(x2 − x3)2 + (y2 − y3)2 (4.9)

By using equation (4.9) and equation (4.11), the area of the union for two arbitrarily-rotated

bounding boxes, i.e., the ith predicted and jth ground truth bounding boxes, can be computed by

substituting in the following expression:

Area(b̂i ∪ bj) = Area(b̂i) + Area(bj)−Area(b̂i ∩ bj) (4.10)

Computing the term Area(b̂i ∩ bj) in equation (5.9): We first determine the corners of two

rotated boxes (b̂i, bj) using equation (4.8), and start with one rotated box (b̂i) as the candidate

intersection polygon. Then, we apply the method of sequential cutting [207] for calculating the

intersection between an edge in the first candidate box b̂i, i.e., the first line equation αiu+ βiv+

τi = 0, with any edge in the second box under comparison bj , i.e., the second line equation αju+

βjv+ τj = 0, by solving to obtain the coordinates of the lines intersection (u, v), where αi, βi, τi

and αj, βj, τj are the coefficients of the lines equations that can be obtained independently using

the lines corners in equation (4.8). We repeat the above process until no more edges remain and

we come up with the candidate intersection polygon.

Finally, by using the vertices of resulted intersection polygon p = b̂i ∩ bj , its area can be

calculated as follow [208]:

Area(p) =

∣∣∣∑n
k=1 ukvmod(k+1,n)−vkumod(k+1,n)

2

∣∣∣ (4.11)

where |·| denotes the absolute operator, and mod(a, b) represents the modulo operator that ob-

tains the remainder of dividing a by b, and (uk, vk) are the coordinates of the kth vertex in the
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Table 4.1: Quantitative comparison among some of the recent text detection methods on IC-
DAR15 [71], ICDAR17 [85] and MSRA-TD500 [181] datasets using precision (P), recall (R)
and F-measure, where bold and underline denote best and second best performances respectively,
and “–” refer to Non Available data.

Method
ICDAR15 ICDAR17 MSRA-TD500

P R F-measure P R F-measure P R F-measure
ROTDC [199] – – – – – – 87.00% 63.00% 74.00%
RRPN [49] 84.00% 77.00% 80.00% – – – 82.00% 69.00% 75.00%
D2MO [129] 82.00% 80.00% 81.00% – – – 77.00% 70.00% 74.00%
EAST [46] 83.30% 78.30% 80.70% – – – 87.30% 67.40% 76.10%
TextBoxess++ [48] 82.20% 76.40% 79.20% – – – – – –
RRD [133] 85.60% 79.00% 82.20% – – – 87.00% 73.00% 79.00%
FOTS [60] 85.60% 79.80% 82.80% 80.90% 57.50% 67.20% – – –
MOSTD [134] 87.20% 76.70% 81.70% 83.80% 55.60% 66.80% – – –
PSE-Net [89] 81.50% 79.70% 80.60% 73.77% 68.21% 70.88% – – –
STELA [197] 88.70% 78.60% 83.33% 78.70% 65.50% 71.50% – – –
R-YOLO [198] 87.00% 78.20% 82.30% 78.00% 66.30% 67.50% 90.20% 81.90% 85.80%
Proposed Method 89.83% 78.28% 83.65% 84.75% 63.23% 72.42% 90.92% 83.84% 87.23%

intersection polygon p.

Using equation (4.10) and equation (4.11), the IoU in equation (5.9) for two arbitrarily-

rotated bounding boxes can now be obtained.

Computing the variableC in equation (5.8): For computing the convex hull of boxes, the areas

highlighted by grey in Figure 4.3-c and Figure 4.3-d, we implemented the Andrew’s monotone

chain algorithm [209]. In this algorithm, after calculating the corner points of two rotated boxes

using equation (4.8), we sort first the 8 points of two rotated boxes. Next, we go through the

points and add each point to the hull. Always after adding a point to the hull, we make sure that

the last line of two points in the hull does not make a counter-clockwise turn. We then repeatedly

remove the second last two point from the hull, and concatenate the lower and upper hulls that

gives the convex hull polygon [210]. At the end, we calculate the area of the obtained polygon

using equation (4.11).
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4.4 Experimental Results

As in [96], we use ResNet-50 as a backbone feature extractor. The whole network with 6 en-

coders and 6 decoders is trained with a batch size of 2 on four NVIDIA V100 16GB GPUs with

AdamW [211] optimizer. Different from [96], we use 300 object queries instead of 100 and

replace the original prediction head with our proposed rotated bounding box prediction. We first

train the proposed network for ∼ 50 epochs on a combination of 10k images of VISD [212] and

10k images of Unreal-Text [213] synthetic datasets and then fine-tune for ∼ 200 epochs on each

of the real datasets [71, 85, 181]. We apply a standard data augmentation for the training images,

which involves randomly resizing between 480 and 1033, horizontal flipping, and normalizing.

4.4.1 Datasets

We evaluate our method on three public benchmark datasets that contain images of different

locations like street views, traffic signs, shopping mall billboards, etc. These datasets also include

multi-oriented text instances, which are described as follows:

ICDAR15: This dataset [71] contains 1000 images for training and 500 images for testing.

The annotations of this dataset are at the word-level represented using quadrilateral boxes at the

word level. This dataset is more challenging in orientation, illumination variation, and complex

background of text instances than ICDAR13 [82]. Most of the images in this dataset are from

indoor environments. The annotations of this dataset are represented using quadrilateral boxes,

where the ground-truth annotations are in the four corner vertices format that each annotation

box can be expressed as g = [x1, y1, x2, y2, x3, y3, x4, y4]>. For fine-tuning of our proposed

network on this dataset, we convert the bounding boxes of this dataset from quadrilateral boxes
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into rotated boxes format by using the mapping function Φ as:

g
Φ7−→ b (4.12)

where b is the annotation in rotated bounding box format equation (4.2), and Φ represents the

cv2.minAreaRect1 function in OpenCV [214], followed by a conversion that maps the rota-

tion angle θ ∈ [−90◦, 90◦) to match the box representation definition in equation (4.2).

ICDAR17: It is a large-scale word-level multi-lingual text dataset [85] comprised of 18000 nat-

ural scene images, sorted into 7200 for training, 1800 for validation and 9000 for testing. Similar

to ICDAR15, This dataset also uses quadrilateral annotations [71], which we convert to our pro-

posed rotated boxes format with the same procedure described in the preceeding paragraph. It

is noteworthy to mention that ICDAR17 is more challenging than ICDAR15 due to the varying

text instances sizes, and the abundance of tiny text instances.

MSRA-TD500: This dataset [181] has been explicitly designed for arbitrarily oriented text de-

tection, which has rotated bounding box representation in the text line level. This dataset contains

200 test and 300 training images of Chinese and English languages. This dataset’s images vary

from indoor (office and mall) and outdoor (street) scenes. The bounding boxes in this dataset

are annotated in (′x, ′y, w, h, θ) format, where (′x, ′y) are the coordinates of the top left corner,

w and h are the width and height of the box, and θ represents the rotation angle. This format is

mapped to the standard rotated box format in equation (4.2) by obtaining the center of the box,

and the terms cos(θ) and sin(θ).

SVT: The images of the street view text (SVT) dataset [31] are collected using Google Street

View camera. The images are mainly taken from outdoor locations, and it has a large number

1https://bit.ly/3dCauBm
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of text instances with low resolution, and some images are blurry. We only use this dataset

for qualitative results (Section 4.4.4) due to its annotations are in rectangular bounding boxes

format that does not offer a fair, objective measure when used to assess rotated bounding boxes

representation based methods.

4.4.2 Evaluation Metrics

For quantitative evaluation, we use the ICDAR15 IoU Metric [71], which is obtained for the ith

ground-truth and jth detection bounding box as shown in equation (5.9), where a threshold of

IoU ≥ 0.5 is used for counting a correct detection and therefore calculating the precision (P ) and

recall (R). As in [46, 54, 57, 58], we also use the F-measure that is a function in the precision

and recall, and it is defined as follow:

F-measure = 2
P ×R
P +R

(4.13)

4.4.3 Quantitative Results

In this section, a quantitative comparison for the proposed and existing state-of-the-arts methods

in [46, 48, 49, 60, 89, 129, 133, 134, 197–199] on three challenging datasets, namely, ICDAR15

[71], ICDAR17 [85] and MSRA-TD500 [181] datasets, is presented.

Detection Accuracy: As depicted in Table 4.1, the proposed method offers an F-measure of

83.65% on the ICDAR15 dataset, which outperforms all the methods in comparison, including

one-stage [46, 48, 89, 197, 198] and two-stage [49, 134] text detectors. By considering IC-

DAR17, which is a larger and more challenging dataset than ICDAR15, our proposed method

also offers the highest performance in terms of precision and F-measure, than that offered by
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FOTS [60], MOSTD [134], STELA [197] and R-YOLO [198]. This higher accuracy confirms

the advantage of using a transformer in focusing on the regions of interest.

For the MSRA-TD500 dataset, which requires predicting line-level instead of word-level text

detection, as can be seen from Table 4.1 also the proposed method provides the best detection

performance compared to the considered state-of-the-art methods [46, 49, 129, 133, 198, 199].

We argue that this high performance of the proposed method is mainly attributed to the at-

tention mechanism that allows the transformer architecture to relate among different parts of

characters of a word or text-line in a given text image to make the final prediction. In addition,

utilizing the GIoU loss with the rotated box representation offers the entire architecture a precise

detection capability.

Loss Function Ablation: We validate the performance gain caused by our proposed loss func-

tion by comparing its detection accuracy on ICDAR15 and ICDAR17 datasets against a baseline

model. The baseline model [96] uses a rectangular box based prediction head which consists of

an `1 bounding box regression loss [206], and a rectangular GIoU based loss [195]. On the other

hand, the proposed method uses an rotated box based prediction head, consisting of a Smooth-ln

loss equation (7.3) and a rotated GIoU based loss equation (5.7) as presented in Section 4.3.3.

The results in Table 4.2 show that the proposed rotated box based method outperforms the base-

line by a large margin; not to mention that using non-rotated rectangular boxes for text detection

exhibit poor results on the multi-oriented datasets.

Computational Speed: Using a single NVIDIA RTX 2070 (8GB GPU), our proposed model

clocks at an average of 10 FPS inference speed. This speed is higher than some of the segmentation-

based [54, 57, 89] and two-stage detectors [49], that require multiple stages of post-processing

and regional proposal [101]. Nevertheless, some one-stage detectors e.g. STELA [197] and R-

YOLO [198] are capable of performing inference at higher speeds when compared to transformer-

based architectures [101, 204] at the cost of a slightly reduced accuracy.
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Figure 4.4: Sample qualitative results showing text detections when rotating the original image
from 0◦ with different orientation angles. The bounding boxes of detected regions are shown
with a cyan color. These images are taken from public datasets [81, 181].

4.4.4 Qualitative Results

Robustness to Rotated Text: We also experimented with rotated images at four different angles

of (−40◦, 0◦, 40◦, 80◦) and evaluated the proposed method’s robustness to different text orienta-

tions. Figure 4.4 illustrates some qualitative samples from this experiment. As it can be seen, the

proposed method can detect text instances of various orientations accurately.

Challenging Conditions: Figure 4.5 illustrates the proposed method’s detection results for sev-

eral challenging cases from ICDAR15, ICDAR17, MSRA-TD500 and SVT datasets. As it can

be seen, the proposed method performs well on the first three datasets that include challenging

fonts, illumination variation, in-plane rotation, and low contrast text instances. To show the gen-

eralization capability of our proposed method, we also experimented with using our ICDAR17

fine-tuned model on a different dataset, namely, the SVT dataset. It can be seen from Figure
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Figure 4.5: Sample qualitative results of the proposed method on some challenging examples
from ICDAR15, ICDAR17, MSRA-TD500 and SVT datasets. PO: Partial Occlusion, DF: Diffi-
cult Fonts, IV: Illumination Variation, IB: Image Blurriness, LR: Low Resolution, PD: Perspec-
tive Distortion, OT: Oriented Text, and CT: Curved Text. All of the above images are reproduced
from the publicly available benchmark datasets [71, 81, 85, 181].
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Table 4.2: Effect of using prediction head with a loss function that is based on a rectangular
(baseline method [96]) or rotated (proposed method) box representation, where the ICDAR15
[71] and ICDAR17 [85] datasets are used, and P, R and F denote precision, recall and F-measure.

Method
ICDAR15 ICDAR17

P R F P R F
Baseline 69.77% 69.23% 69.50% 67.46% 66.00% 66.72%
Proposed 89.83% 78.28% 83.65% 84.75% 63.23% 72.42%

(a) HPD (b) CS (c) DF (d) LR, IV

Figure 4.6: Qualitative results of failed cases. The first left image is from [85], the two mid-
dle images are from [81], and the last right image is from [71]. Yellow and green bounding
boxes show the correct detection and missed ground truths, respectively. HPD: High Perspective
distortion, CS: Character space, DF: Difficult font, LR: Low Resolution, IV: Illumination Vari-
ation. All of the above images are reproduced from the publicly available benchmark datasets
[71, 81, 85].

4.5 that the proposed model is able to handle low resolution and rotated texts without requiring

any extra fine-tuning, thereby confirming the transformer’s attention modules capability to rea-

son about feature maps in different scales. While our proposed method is designed for detecting

multi-orient text, it can be seen from Figure 4.5 that it is also capable of detecting curved text

instances. For example, from this figure, the proposed method detected the curved line-text in

the second image of MSRA-TD500 with one bounding box, and it also detected the three curved

words in the first image of SVT with three separate boxes.

Figure 4.6 shows some failure cases of the proposed method. For instance, Figure 4.6-a

characterizes failure cases caused by large perspective distortions, and similar text font color to

the background, leading to some missed detections. Also Figure 4.6-b shows the effect of large
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separation between the word’s characters on the detection; causing our model to only detect a

subset of the whole word.

For complex fonts as shown in Figure 4.6-c, the proposed method also fails to detect the text.

We attribute this missing detection to the scarcity of such fonts in the training data. Despite the

severe illumination changes and small text instances shown in Figure 4.6-d, our proposed model

was able to detect most instances and only missed a few. The missed detections are mainly caused

by the transformer’s reduced performance when detecting text of low-resolution [96, 201].

These challenging examples indicate that there is still a room to improve the proposed scheme’s

performance by tackling the challenges of complex fonts, illumination variations, low-resolution

text and geometric distortions.

4.5 Conclusion

We have presented a transformer-based architecture for multi-oriented text detection in the wild.

Extensive experiments on three challenging datasets have solidified the viability of our approach

as it outperforms state-of-the-art methods, including recent rotated-bounding-box-based text de-

tectors, in terms of precision and F-measure, while maintaining a favorable recall. Achieving

these results would not have been possible without the proposed rotated bounding box represen-

tation and its associated loss function, tailored to the multi-oriented text detection problem.

In this Chapter, our proposed model only detects multi-oriented text instances. However,

there are many text instances in the wild images that appear in the forms of curved or arbitrar-

ily shapes that require polygon representation. The rotated-rectangular bounding boxes do not

entirely fit these types of text boundaries. Therefore, in Chapter 5, we leverage a polygon or

Bezier curve representation by extending the current transformer’s architecture to detect curved

or arbitrarily shaped text instances.
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Chapter 5

Arbitrary-shape Text Detection using

Transformers

Recent text detection frameworks require several handcrafted components such as anchor gen-

eration, non-maximum suppression (NMS), or multiple processing stages (e.g. label generation)

to detect arbitrarily shaped text images. In contrast, we propose an end-to-end trainable architec-

ture based on Detection using transformers (DETR), that outperforms previous state-of-the-art

methods in arbitrary-shaped text detection.

At its core, our proposed method leverages a bounding box loss function that accurately mea-

sures the arbitrary detected text regions’ changes in scale and aspect ratio. This is possible due

to a hybrid shape representation made from Bezier curves, that are further split into piece-wise

polygons. The proposed loss function is then a combination of a generalized-split-intersection-

over-union loss defined over the piece-wise polygons, and regularized by a Smooth-ln regression

over the Bezier curve’s control points.

We evaluate our proposed model using Total-Text and CTW-1500 datasets for curved text,

and MSRA-TD500 and ICDAR15 datasets for multi-oriented text, and show that the proposed
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method outperforms the previous state-of-the-art methods in arbitrary-shape text detection tasks.

5.1 Introduction

Scene text detection is the process of accurately localizing text instances in wild images; it is

an essential component that enables various practical applications such as text recognition, blind

navigation, and topological mapping to name a few [101, 215]. While recent text detection

methods [46–48, 54, 197, 198, 216] have shown reliable performance on horizontal and multi-

oriented text, accurate detection of texts in an arbitrary geometric layout is still an open-ended

problem.

The majority of State-Of-The-Art (SOTA) arbitrary shape text detectors are built on ob-

ject detection or segmentation frameworks, and can be categorically divided into two classes:

segmentation-based [4, 53, 54, 57, 89, 217, 218] and regression-based [46, 48, 100, 217, 219–

221]. The segmentation-based methods [4, 53, 54, 57, 89, 216, 218, 222] encode text instances at

a pixel level, and aggregate the resulting pixels to generate a segmentation mask per text instance.

While they are flexible in detecting arbitrarily shaped texts, they require complex architectures

and computationally expensive post-processing steps to be able to detect quadrilateral and curved

text instances. This results in a high inference time, and increased difficulty to train them, which

in turn requires extensive amounts of training data.

On the other hand, regression-based methods [46, 48, 100, 217, 219–221] are inspired from

generic object detection frameworks [5, 9, 10, 74, 223], and model text instances as objects.

Unlike segmentation-based methods, they output bounding boxes around the text regions using

relatively simple architectures; as such, they are fast and easy to train. While some of these

methods can achieve good performance on irregular texts, appropriately formulating anchors to

fit arbitrarily-shaped text instances is not a solved problem, and requires post-processing steps
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(e.g., NMS) to achieve a reliable final detection.

Recent advancements in object detection enabled transformer frameworks [224–226] like

DETR (Detection Transformer) [96] to eliminate the need for many of the existing handcrafted

post-processing steps such as anchor generation, and non-maximum suppression (NMS) from the

object detection pipeline [9, 10, 73, 74], all while achieving superior performance. For example,

Raisi et al. [2], leveraged the DETR [96] architecture for multi-oriented scene text detection and

achieved SOTA performance in some benchmark datasets. Nevertheless, DETR has difficulties

detecting small objects and suffers from a slow convergence rate. To address these issues, [201]

introduced a deformable attention module to focus on a sparse small set of prominent key ele-

ments, thereby performing better in terms of average precision, and obtaining faster convergence

during training. However, [96, 201] frameworks can only generate rectangular bounding boxes

around the detected objects, and cannot handle arbitrarily shaped texts.

In contrast to [96, 201], we propose an end-to-end transformer-based object detection archi-

tecture that can directly localize multi-oriented or curved text instances in the given image. Our

proposed text representation is tailored to the scene text detection task as it predicts 8 or 16 con-

trol points of a quadrangle box or Bezier curve respectively, for each text region; this allows our

method to overcome the drawbacks of directly deploying a generic object detector as in [96] that

predicts only 4 points of every rectangular box.

Our main contributions can be summarized as follows: (1) We propose an end-to-end train-

able transformer-based framework for arbitrary shaped text detection; the proposed architecture

can directly output fixed vertices for the Bezier curves that bound multi-oriented and curved text

shapes. This is achieved by modifying the prediction head of the baseline pipeline via designing

a new text detection technique that aims to infer n-vertices of a polygon or the degree of a Bezier

curve that is better suited for irregular-text regions; and (2) We propose a loss function that is

accurate in measuring the changes in scales and aspect ratios of the detected text regions, and
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accepts arbitrary shapes of text instances using both Bezier curves and polygon bounding boxes.

(3) We study the effect of different vertices of polygon representation with the transformer’s

architecture on arbitrary shape text instances.

5.2 Related Work

5.2.1 Segmentation-based Methods

Segmentation-based methods typically decompose text instances in a given image into pix-

els/segments that are then aggregated into an output mask. Segmentation methods cover a large

body of research including [4, 53, 54, 57, 89, 216, 218, 222] to name a few. For example,

PixelLink [54], adopted a segmentation framework of SSD [10] with a FCN [3] to predict the re-

lationship links between pixels of text and non-text instances, to localize similar adjacent pixels,

and to group them. TextSnake [53] proposed to detect the arbitrary shape of text instances with

ordered disks and text centre lines. To efficiently separate close text instances, PAN [4] made use

of an efficient instance semantic segmentation framework that selectively aggregates text pixels

according to their embedding distances, resulting in a model that can handle arbitrary shape text

regions. PSENet [89] expanded the final local segmented areas from small kernels to prede-

fined scales, allowing close text instances to be separated using a progressive scale algorithm.

TextField [218] deployed a deep direction field approach to generate candidate text parts, and to

link neighboring pixels. Different from mentioned word-level detectors, CRAFT [57] proposed

to detect and connect character regions to generate polygons of arbitrary-shape text instances;

this was achieved by training a U-Net [223] type framework in a weekly semi-supervised learn-

ing process.
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5.2.2 Regression-based Methods

Regression based methods such as [46, 48, 100, 217, 219–221, 227, 228] are mostly inspired by

general object detectors (e.g., Faster R-CNN [9] and SSD [10]); they directly regress the entire

word or text-line with arbitrary shape in an image at object level.

Early regression-based methods such as TextBoxes++ [48] and EAST [46] used SSD’s [10]

architecture to detect text regions with rotated rectangles or quadrilateral descriptions. More re-

cently, [2] extended DTER’s [96] architecture to output rotated rectangular boxes directly and

achieved SOTA performance in multi-oriented benchmark datasets. However, these represen-

tations ignore the geometric traits of the arbitrary shape of curved texts and end up producing

considerable background noise.

To better fit arbitrary shaped text, more advanced methods proposed the use of polygons; For

example, LOMO [217] took advantage of both segmentation and regression-based architectures

by utilizing Mask-RCNN [74] as their base framework, and introducing iterative refinement and

shape expression modules to refine bounding box proposals of irregular text regions. TextRay

[219], leveraged the SSD framework by eliminating the anchor design, and detecting polygons

in the polar coordinate system to better represent arbitrary shape text instances. ABC-Net [100,

221] build on a ResNet-50 [164] feature extractor with a Feature Pyramid Network (FPN) [5]

as their backbone, and introduce a Bezier curve representation in order to detect multi-oriented

and curved scene text instances. FCENet [220] extends the base network of [100] by performing

some post-processing steps like Inverse Fourier Transforms (IFT) and NMS to reconstruct text

contours of arbitrary-shape text instances.

5.3 Methodology

Our proposed framework leverages an efficient and fast-converging encoder-decoder detector,
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namely Deformable-DETR [201], as the main detection architecture. A CNN backbone extracts

first multi-scale feature maps from the input. After attaching positional encodings to the resulted

features, they fed into the transformer encoder, which outputs refined multi-scale features. Then

A fixed small set of learnable embedding called object queries is passed through the transformer

decoder parallelly. The decoder generates instance-aware query embeddings, which are then fed

into a prediction head that directly converts the decoders’ outputs into each query’s class and

bounding box set. The proposed network is trained by a Bipartite matching loss that utilizes the

Hungarian matching algorithm [194] to compare a one-to-one mapping between N queries and

N ground-truths [96].

In this work, instead of computing 4 scalars that correspond to the (x, y, w, h) coordinates of

the centers (x, y) and the height (h) and width (w) of the box, we extend the number of predicted

variables to 2 × n scalars that correspond to the coordinates of the n control points of a Bezier

curve in equation (5.2) and the k polygon points in equation (5.10). To train the network, we

modify the regression head, along with the loss and matching functions as described in Section

5.3.2.

5.3.1 Text Regions Representations

Rectangular Bounding Boxes: Rectangular bounding boxes are one of the most intuitive repre-

sentations of horizontal text regions; as shown in Figure 5.1(a), a bounding box b = [x, y, w, h]>

can encase the text region by simplify defining (x, y) as the bounding box’s center point coor-

dinates, and w, h representing the box’s width and height respectively. However, rectangular

bounding boxes suffer from several limitations that render them inadequate for irregular text

representations; some of these limitations include: (a) limited ability to distinguish among over-

lapped or nearby text regions, (b) they can not precisely bound marginal-text, and (c) they include

large irrelevant background areas that can affect the detector’s loss function during trainin and
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(a) Rectangle bounding box (b) Rotated Rectangle bounding box (c) Quadrilateral bounding box (d) Polygon bounding box (e) Bezier curve bounding box

Figure 5.1: Illustrations of different techniques for representing bounding boxes for scene text
detection. The Bezier curves in (e) better draw smooth lines between arbitrary shaped text in-
stances with fixed 8 control points that are more suitable for training our proposed framework.
Furthermore, we can better rectify the detected regions in (e), which later lead to a more accurate
word recognition performance [100]. The above images are from public dataset [72].

can generate noisy regions for subsequent analysis, i.e., text recognition. To address these limita-

tions, arbitrary shaped text regions are typically represented using other categories of bounding

boxes as shown in Figure 5.1(b)-(d) which all aim to bound text of arbitrary orientations and

shapes.

Quadrilateral Representation: A Quadrilateral bounding box can be described as follows:

b = [x1, y1, x2, y2, x3, y3, x4, y4]>, (5.1)

where (xi, yi) are the four vertices of the quadrilateral arranged in a clockwise order. The added

dimensions allow the quadrilateral to precisely represent various types of text regions including

horizontal, multi-oriented, and slight-round texts. It is then no surprise that they have been used

in many text detection benchmark datasets [71, 85, 229],

Polygon Representation: Polygons are a natural extension of quadrilaterals, where the number

of points is increased from 4 to n − point vertices; the bounding box defined by the polygon
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vertices can then be defined as b = [(xi, yi)|i = 1, 2, ..., n]>, which can essentially better follow

the boundary of a text region, and accordingly represent any arbitrarily-shaped text.

Bezier Curves: Similar to [100], we adopt Bezier curve to represent the boundaries of the text

regions in equation (7.1), where an example of this representation is shown in Figure 5.1(e).

Unlike polygons, a Bezier curve is a parametric curve of degree n, Yn(t), which is used to

draw smooth lines between text bounds. The general form of an n-degree Bezier curve can be

expressed in terms of a set of n+ 1 control points {Pi}ni=0 as:

Yn(t) =
n∑
i=0

Bi,n(t)Pi, 0 ≤ t ≤ 1 (5.2)

where Pi = (xi, yi|i = 0, 1, . . . , n), t is a normalized independent variable that is used to move

along the Bezier curve with a step that determines the smoothness of the curve, and Bi,n(t)

denotes the ith version of the n−degree Bernstein Polynomials [230] that are defined using:

Bi,n(t) =

(
n

i

)
ti(1− t)n−i, i = 0, 1, . . . , n (5.3)

and
(
n
i

)
is the Binomial coefficient.

While a 3rd-degree Bezier curve, defined by 4 control points, is effective in representing

one side of an arbitrary shape text, another 3rd-degree Bezier curve is needed the represent the

opposite side (as shown in Figure 5.1(e)), bringing the total number of control points needed to

fully represent text boundaries to 8. The 8 control points are then computed during regression

and prediction as: Therefore, as shown in Figure 5.1(e), to cover the main two sides of arbitrary

shape text, we adopt a pair of 3rd-degree Bezier curves, with 8 control points in total to represent

text boundaries during regression and prediction phases as follow:

(Pij = xij, yij|i = 0, 1, ..., 3, j = 0, 1) (5.4)
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where bi in equation (7.1) are the vertices of the Bezier curve obtained using equation (5.2).

5.3.2 Proposed System

Similar to [100], we adopt Bezier curves to represent the boundaries of arbitrary shape text

instances. To achieve this, we modify the prediction head of deformable DETR’s architecture

[201] to output 16 parameters that represent the Bezier control points. However, unlike [96] and

[201] that use a generic Generalized Intersection over Union (GIoU) with `1-regression [195]

(shown in Figure 5.1(a)), we propose a split GIoU loss for Bezier control points of equation (5.4)

(shown in Figure 5.2), along with a Smooth-ln regression based loss [2].

The intuition behind the split GIoU is to better compute the difference (loss) between the

ground truth and estimated text boundaries. While GIoU can be computed over the Bezier curves,

it is computationally inefficient and more complex to calculate the area of intersection between

two Bezier curves. To mitigate this, we split the Bezier curve computed from the regressed

control points into several rectangles. The piece-wise GIoU over the rectangles can then be

computed efficiently, and the overall set of rectangles defining one text instance are smoothed

with the regression loss function over the Bezier curve control points.

The bounding box loss function of [96] uses a linear combination of `1 and GIoU loss. Let b̂i

and bj denote the ith predicted and jth ground truth bounding boxes, respectively, then we define

our loss function as:

LBbox(b̂i, bj) = λ1LBreg(b̂i, bj) + λ2LBGIoU(b̂i, bj) (5.5)

where λ1 and λ2 ∈ R are hyper-parameters, and LBreg(·) and LBGIoU(·) are the Bezier-curved loss

functions based on regression and GIoU. For regression, we use the Smooth-ln based Regression

Loss as in [2]. The regression loss is then defined as:

LBreg(b̂i, bj) = (|∆bij|+ 1) ln(|∆bij|+ 1)− |∆bij| (5.6)
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Figure 5.2: Illustration of the proposed methods. The control points (dotted lines) in (a) and
polygon vertices (’x’ points) in (b) are predicted directly by the network. The entire rectangle
(green dash lines) in (a) is used for Full GIoU calculation. The three split rectangles (blue lines
in (a)) and rotated rectangles (orange lines in (b)) make the GIoU and then the Bezier curves
(cyan line) and polygon vertices to better bound to high curved text instances.

where ∆bij = b̂i − bj and | · | demonstrates the absolute operator. The second part of equa-

tion (7.1) consists of GIoU loss, which plays an important role in the framework of detection

using transformers [96]. The GIoU loss is computed as:

LBgiou(b̂i, bj) = 1− GIoU(b̂i, bj), (5.7)

The GIoU for two arbitrarily bounding boxes b̂i, bj ⊆ S ∈ Rn can be defined as follows:

GIoU(b̂i, bj) =IoU(b̂i, bj)−
Area(C\(b̂i∪bj))

Area(C)
(5.8)

with IoU(b̂i, bj) =
Area(b̂i ∩ bj)
Area(b̂i ∪ bj)

, (5.9)

where C shows the smallest area that encloses both prediction and ground-truth boxes b̂i and bj ,

and Area(·) denotes the area of a set. To compute the GIoU loss for 16 Bezier points of the
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architecture, we start by calculating the rectangular bounding box that bound all control points

of equation (5.4) in the ground truth and prediction outputs of the network. To better fit to high

curved text instances in arbitrary shape benchmarks [72, 86], we then split the Bezier control

points into several axis-aligned rectangular bounding boxes, where the first rectangular box is

computed from P1, P2, P7, P8 Bezier control points, the second and third boxes are also obtained

from P2, P3, P6, P7 and P3, P4, P5, P6, respectively. This process is summarized in Figure 5.2(a).

5.3.3 n−point Polygon Ground Truth Generation

The Bezier control points move outside of the image when the text appears near the margin

of an image, requiring negative values of (x, y). Since the final prediction head of [96, 201]

only outputs positive values, it fails to precisely detect the mentioned text instances. To address

this issue, instead of using the Bezier control points directly as shown in Figure 5.2(a), we first

calculate the 3rd-degree Bezier curve for each side of the text, defined by 4 control points. We

then recalculate the n−polygon vertices (as illustrated in Figure 5.2(b)) by uniformly sample nv

points as follows:

pk =
n=4∑
i=0

PiBi,nk/nv, (5.10)

where pk demonstrates the new k-th sampled polygon points, Pi indicates the i-th Bezier con-

trol points and nv shows the polygon points used for sampling. Bi,n represents the n−degree

Bernstein Polynomials [230] as described in equation (5.3).

5.4 Experimental Evaluation

We evaluate the performance of our proposed system, on public scene text detection datasets

[71, 72, 85, 86] that cover a wide range of challenging scenarios. We also perform a set of
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quantitative and qualitative experiments to benchmark the SOTA text detection [4, 46, 53, 54, 57,

89, 100, 118, 216–222, 227, 228, 231, 232] techniques against our proposed model. Following

the criteria used in [100] to evaluate performance on arbitrary shaped text, and the evaluation

metrics [71, 85] used to evaluate ICDAR’s multi-oriented text, we report on the Recall, Precision,

and F-measure of the various methods.

5.4.1 Implementation Details

We adopt the recent Deformable DETR [201] model with a ResNet-50 [164] backbone as our

base object detector architecture. The number of object queries are set to 300 and an AdamW

[211] optimizer is used to optimize the parameters of the model. We use a horizontal flip and and

resize the images similar to [201] for augmentation. All our proposed models are pre-trained on

synthetic datasets as in [100] for 20 epochs with a batch size of 2 per GPU using 4 Tesla V100

GPUs with a learning rate (LR) of 1× 10−4. We follow [201] for other hyper-parameters during

pre-training. During fine-tuning, we adopt a different LR schedule and train for about 200 epochs

for both the Total-text and CTW-1500 datasets, and drop the LR by a factor of 10 after 70 epochs.

As for ICDAR15, we further pre-train the models using about 10, 000 images of ICDAR17 [85]

dataset for 50 epochs and then fine-tune for about 300 epochs to ensure the training converges.

For calculating the rotated version of bounding box loss function, we used the method described

in [2].

5.4.2 Datasets

We make use of several recently published and challenging datasets, that can be categorized

into multi-oriented text datasets, ICDAR15 [71] and MSRA-TD500 [181] with quadrilateral

representation (Figure 5.1(c), and arbitrary-shaped text datasets, Total-Text [72] and CTW-1500

[86] with n-vertices polygon representation as shown in Figure 5.1(d).
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5.4.3 Comparisons with SOTA Methods

In this section, we first compare the proposed model with the SOTA methods [4, 46, 54, 57,

89] on two popular datasets containing curved text: Total-Text [72] and CTW-1500 [86]. We

evaluate the datasets on two models: (1) that uses 16 control points of the Bezier curve with

three splits rectangularly (Figure 5.2(a)) and (2) that uses 20-points polygon with three splits

rotated rectangularly (Figure 5.2(b)).

Arbitrary-Shape Text Datasets: We first compare our baseline and proposed models on two

popular benchmarks, Total-Text and CTW-1500, containing curved text and have n-vertices poly-

gon annotations.

Results of Total-Text: As seen in Table 5.1, both proposed models achieved the best perfor-

mance in terms of Recall and Precision compared to other segmentation-based and regression-

based methods. The second model outperformed the first model, overall by ∼ 0.6. The effec-

tiveness of our contributions are evident in the qualitative results of Figure 5.3 as it demonstrates

how the Bezier curve and 20-point polygons estimated by our proposed methods can better fit

more challenging arbitrary-shaped text instances.

Results of CTW-1500: Despite the highly curved text instances in this dataset, our first method

surpassed other SOTA systems, achieving the best precision of 88.3% and a F-measure of 86.1%.

The second method also performed better than the first on this dataset, which shows how ef-

fectively using 20−points polygon can bound high curved text-line instances. The qualitative

results using the proposed methods for some challenging samples of the CTW-1500 [86] dataset

are shown in Figure 5.4, where the proposed methods perform better than ABC-Net [100] and

TextRay [219] and exhibit competitive results in some cases against FCENet [220] that uses a

smoother curve. The second model that uses 20-points of a polygon with split rotated rectangu-

lar outperformed the first model, by overall ∼ 0.6. It is worth mentioning that the Bezier curve
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Table 5.1: Comparison of the detection results on Total-Text, CTW-1500, ICDAR15, and MSRA-
TD500 datasets with recent regression and segmentation based methods. The best performance
is highlighted in bold. ”R”, ”P”, and ”F” denote Recall, Precision, and F-measure respectively.

Methods Total-Text CTW-1500 MSRA-TD500 ICDAR15
R P F R P F R P F R P F

SegLink [118] - - - - - - 70.0 86.0 77.0 76.8 73.1 75.0
Textboxes++ [48] - - - - - - - - - 78.5 87.8 82.9
EAST [46] 50.0 36.2 42.0 49.7 78.7 60.4 67.4 87.3 76.1 78.3 83.3 80.7
TextSnake [53] 74.5 82.7 78.4 77.8 82.7 80.1 73.9 83.2 78.3 84.9 80.4 82.6
TextDragon [231] 75.7 85.6 80.3 82.8 84.5 83.6 - - - 83.7 92.4 87.8
TextField [218] 79.9 81.2 80.6 79.8 83.0 81.4 75.9 87.4 81.3 80.0 84.3 82.4
PSENet-1s [89] 77.9 84.0 80.9 79.7 84.8 82.2 - - - 84.5 86.9 85.7
Seglink++ [227] 80.9 82.1 81.5 79.8 82.8 81.3 - - - 80.3 83.7 82.0
LOMO [217] 79.3 87.6 83.3 76.5 85.7 80.8 - - 83.5 91.3 87.2
CRAFT [57] 79.9 87.6 83.6 81.1 86.0 83.5 78.2 88.2 82.9 84.3 89.8 86.9
PAN [4] 81.0 89.3 85.0 81.2 86.4 83.7 83.8 84.4 84.1 81.9 84.0 82.9
DDRG [228] 84.9 86.5 85.7 83.0 85.9 84.5 82.3 88.0 85.1 84.7 88.5 86.5
TextRay [219] 77.9 83.5 80.6 80.4 82.8 81.6 - - - - - -
ABC-Net-v1 [100] 81.3 87.9 84.5 78.5 84.4 81.4 - - - - - -
FCENet [220] 82.5 89.3 85.8 83.4 87.6 85.5 - - - 82.6 90.1 86.2
CounterNet [232] 83.9 86.9 85.4 84.1 83.7 83.9 - - - 86.1 87.6 86.9
DB [222] 82.5 87.1 84.7 80.2 86.9 83.4 79.2 91.5 84.9 82.7 88.2 85.4
ABC-Net-v2 [221] 84.1 90.2 87.0 83.8 85.6 84.7 81.3 89.4 85.2 86.0 90.4 88.1
Our model-1 85.7 89.4 87.5 84.0 88.3 86.1 84.5 87.4 85.9 81.5 89.3 85.2
Our model-2 86.4 89.1 87.8 85.3 89.2 87.2 85.0 88.1 86.5 83.1 90.2 86.5
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model showed poor performance in detecting text instances near the margin of the images. The

second proposed model performed better in these types of text instances.

Multi-oriented Text Datasets: We also compare the detection performance of the transformer’s

architecture using the Bezier curve for multi-oriented datasets of MSRA-TD500 and ICDAR15.

For this purpose, we use the baseline-4 with Smooth-ln regression and rectangular GIoU loss for

training of Bezier curve and 20-points polygon models because of the quadrilateral annotation in

these datasets. It is worth mentioning that splitting the GIoU in these datasets does not affect to

the final performance.

Results of MSRA-TD500: As shown in Table 5.1 our proposed methods achieves SOTA results

in terms of Recall of 85.0% and F-measure of 86.5%. Our model-2 that uses a 20-point polygon

representation outperformed the Bezier curve representation and it surpasses the previous best

method by a relatively significant margin of ∼ 4% and ∼ 1.5% on the Recall and F-measure

performances, respectively.

Results of ICDAR15: As shown in Table 5.1, our both models achieve competitive results with

SOTA detection models in ICDAR-15 datasets. When using a 20−points polygon our models

outperform the Bezier curve representation with 16 control points. Nevertheless, both models’

F-measure and recall performances were lower than some of the best-performing approaches on

this dataset. We believe this reduced performance is related to the transformer architecture’s

limited capabilities in detecting low-resolution and small text instances.

5.4.4 Ablation Study

To assess the added value of the various components in our model, we performed an extensive

ablation study on Total-Text and CTW-1500 as demonstrated in Table 7.2.
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Table 5.2: Ablation study on the effects of the various proposed components on the F-measure
metric for Total-Text [72] and CTW-1500 [86] datasets. R and RR denote the rectangle and
rotated-rectangle, respectively.

Method Reg GIoU # split Total-Text CTW-1500
Baseline-1 X - - 79.01 78.25
Baseline-2 X - - 79.52 78.63
Baseline-3 - X R(1) 82.46 80.83
Baseline-4 X X R(1) 83.41 83.70
Our model-1 X X R(3) 87.50 86.10
Our model-2 X X RR(3) 87.80 87.20

We started the experiments by eliminating the GIoU loss and training the model with `1 loss

only; the model achieved a F-measure performance of 79.01% and 78.25% for Total-Text and

CTW-1500 datasets, respectively. We then replaced the `1 with the Smooth-ln loss, yielding a

slightly improved F-measure.

We found that only using the GIoU loss defined over the entire rectangle led to further perfor-

mance boosts, which in turn was further improved when we combined both GIoU and Smooth-ln

losses. Then, we evaluated the split version of GIoU loss with 3 rectangles achieved the best per-

formance by improving∼ 4% and∼ 2.5% for Total-Text and CTW-1500 datasets in the ablation

study.

Finally, we conducted another experiment by using a 20−points polygon representation with

3 split rotated rectangles and rotated loss functions as shown in Figure 5.2(b). Applying this

system on the network’s head outperformed the first model, especially on the CTW-1500 dataset

by a margin of ∼ 1%. It is worth mentioning that using a split version of the rotated rectan-

gle does not affect the Bezier curves’ F-measure performance on the mentioned datasets. The

qualitative results on some challenging cases of Total-Text (shown in Figure 5.3) confirm the

effectiveness of the proposed methods with split GIoU when compared to only using a single

rectangular GIoU.
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Table 5.3: Ablation study of our model using different points of Polygon vs. Bezier (16 points)
representation for Totat-Text.

Method # points Recall Precision F-measure
Bezier curve 16 64.5 71.3 67.7
Polygon 8 51.7 59.6 55.4
Polygon 16 62.0 68.6 65.1
Polygon 20 64.2 73.5 68.5
Polygon 24 63.6 67.6 65.5
Polygon 40 64.8 59.7 62.1
Polygon 80 20.4 58.7 30.3
Our model-1 16 66.2 74.3 70.0
Our model-2 20 66.1 76.6 70.9

We also trained the Total-Text [72] dataset with different fixed 8, 16, 20, 24, 40, 80-points

of polygon representation and compared it with Bezier curve representation in Table 5.3. The

reason for using the Total-text dataset in this experiment is that it contains challenging curved

and oriented text instances at the word level. For a fair comparison, we used a model with similar

loss function and split rectangle in Table 7.2 and the whole training set of Total-text. We trained

both models for 300 epochs. As seen, the Bezier curve with 16 control points and 20−points

polygon representation are more suitable for detection than using other vertices of a polygon.

In addition, we continue experimenting by training the first and second models that use three

split GIoU with 16 Bezier control points, and three splits rotated GIoU with 20-point polygon

representations, respectively, which the second model performed better in terms of precision and

F-measure.

5.5 Conclusion

We have presented an arbitrary-shape text detector that directly outputs the bounding boxes of

arbitrary shape text instances in natural images. The proposed framework builds on DETR’s
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(b) Bezier curve split GIoU (a) Bezier curve rectangular GIoU (c) 20-point polygon Split rotated GIoU 

Figure 5.3: Compare the effect of using split GIoU and baseline GIoU. As seen, the proposed
methods with split GIoU in Table 7.2 better fits the highly curved text instances. The above
images are reproduced from public dataset [72].

architecture to output a fixed set of Bezier curve’s control vertices and n−points of polygon,

which in turn can be used to represent arbitrary polygons of curved and multi-oriented texts. For

accurate detection, especially on different challenging arbitrary shape text instances in irregular-

text datasets such as Total-Text and CTW-1500, we have also proposed a split version of the

Bezier curve and n−points of polygon computed from the regressed control points into several

rectangles to better fit to the highly curved texts.

We have validated our proposed system using several quantitative and qualitative experiments

on challenging benchmark datasets, including multi-oriented quadrilateral annotated text and

curved text with n-vertex polygons representations. We have also compared the performance of

our proposed method with SOTA scene text detection methods, and demonstrated the superior

performance of our models on arbitrary shape text and multi-oriented text benchmarks. Our

best proposed model that uses a 3 splits rotated rectangular loss function achieves the best F-

measure performance of 87.8% and 87.2% for Total-Text and CTW-1500 datasets, respectively.

Our system also exhibits SOTA performance in Recall (85.0%) and F-measure (88.1%) on the
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Figure 5.4: Qualitative comparison of our proposed models among SOTA methods on the CTW-
1500 dataset [86]. The sample results of other methods are taken from [220].
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MSRA-TD500 dataset and yield competitive results for ICDAR15 benchmarks.

In the next Chapter (Chapter 6), we focus on the recognition task, which aims to output

a string/word instance from the cropped word images. The recognition task requires a different

pipeline than the detection pipeline used in the previous two chapters. We use an encoder-decoder

transformer architecture for addressing the irregular text instances. Our main contribution in the

next Chapter is leveraging a 2D Learnable Sinusoidal frequencies Positional Encoding (2LSPE)

with a modified feed-forward neural network to better encode the 2D spatial dependencies of

characters in the irregular text instances.
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Chapter 6

2LSPE: 2D Learnable Sinusoidal

Positional Encoding using Transformer for

Scene Text Recognition

Positional Encoding (PE) plays a vital role in a transformer’s ability to capture the order of se-

quential information, allowing it to overcome the permutation equivarience property. Recent

state-of-the-art transformer-based scene text recognition methods have leveraged the advantages

of the 2D form of PE with fixed sinusoidal frequencies, also known as 2SPE, to better encode

the 2D spatial dependencies of characters in a scene text image. These 2SPE-based transformer

frameworks have outperformed Recurrent Neural Networks (RNNs) based methods, mostly on

recognizing text of arbitrary shapes; However, they are not tailored to the type of data and clas-

sification task at hand. In this work, we extend a recent Learnable Sinusoidal frequencies PE

(LSPE) from 1D to 2D, which we hereafter refer to as 2LSPE, and study how to adaptively

choose the sinusoidal frequencies from the input training data. Moreover, we show how to ap-

ply the proposed transformer architecture for scene text recognition. We compare our method
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against 11 state-of-the-art methods and show that it outperforms them in over 50% of the stan-

dard tests and are no worse than the second best performer, whereas we outperform all other

methods on irregular text datasets (i.e., non horizontal or vertical layouts). Experimental results

demonstrate that the proposed method offers higher word recognition accuracy (WRA) than two

recent transformer-based methods, and eleven state-of-the-art RNN-based techniques on four

challenging irregular-text recognition datasets, all while maintaining the highest WRA values on

the regular-text datasets.

6.1 Introduction

Recent state-of-the-art scene text recognition methods [27, 63–67, 93–95] are mainly based on

the combination of a Convolutional Neural Network (CNN) as a feature extractor, and Recurrent

Neural Networks (RNNs) for capturing sequential dependencies and producing sequences of

characters. Although these RNN-based methods [27, 63–67, 93–95] perform well when the text

in an image is horizontal or nearly horizontal, they often fail to correctly recognize irregular

text1 [101]. The main reason for these failures is that RNN-based methods require converted

1D features and are not designed for recognizing irregular-text instances, thereby cannot localize

spatial information within 2D images. Several RNN-based methods have tried to mitigate the

high curvature recognition problem using a spatial rectification module [11] that first rectifies

the input image into a normalized image, and then treat the recognition problem as a sequence

prediction task. However, rectification may cause errors in character recognition when the text

exhibits severe curvature or orientation [101] values.

Transformer [1, 96] and its variations, such as Performer [233], are fairly recent deep learning

architectures that mitigate the aforementioned issues for CNNs. Different from RNN based

1Irregular-text refers to text with arbitrary shapes that usually have severe orientation and/or curvature.
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sequence-to-sequence models, a transformer adopts a global attention mechanism to encode and

decode characters inside the text image using a look ahead strategy that is agnostic to the order of

pixels. These capabilities enabled the application of transformers to a wide variety of problems

with sequential data, such as machine translation [1], speech recognition [200], and computer

vision [96, 204].

Central to the success of transformers, a Positional Encoding (PE) is an essential mecha-

nism that enables the self-attention block to overcome its own permutation equivariance; that

is without PE, the transformer’s representation behaves similar to that of a bag-of-words model

[185, 234]. There are several types of PE that have been used for the transformers (summarized

in Table 6.1), and were mostly introduced for Natural Language Processing (NLP) applications:

For example, the Sinusoidal PE (SPE) of fixed frequencies was introduced in [1] for language

modeling; it is inductive and can handle input sequences of variable sizes. Relative PE (RPE)

[235] and fully Learnable PE (LPE) [236] have also been used for machine translation, where

the positional encoding values are learned from the data; However, these models are data-driven

and therefore can not generalize to out of distribution samples.

In this work, we first extend the Learnable Sinusoidal Positional Encoding (LSPE) [234] from

1D to 2D, and apply the introduced 2LSPE version for scene text recognition. The proposed

model has a learnable frequency capability, allowing it to adjust itself during training according

to the input text instances of different lengths. As in [1], the development of the proposed scene

text recognition model is based on the idea that a scene text image can be treated as a sequence

of characters, which allows for the auto-regressive recognition of characters in an image.

Our contributions can be summarized as follows:

1. We are the first to apply the 2D Learnable Sinusoidal Positional Encoding (2LSPE), in

which the frequencies are learned, to scene text recognition.
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2. We show that the proposed model offers better recognition accuracy when compared to

other state-of-the-art techniques, namely, [27, 63–67, 93–95] on five out of eight scene

text recognition datasets [71, 79, 81, 83, 119], and not worse than second best results.

Moreover, our method outperforms all other methods on irregular text datasets.

6.2 Related Works

Inspired by speech recognition solutions, previous state-of-the-art scene text recognition meth-

ods [27, 63–67, 93, 94, 145, 147, 149, 150] were mainly based on RNN frameworks [75] that

leverage Long-Short-Term-Memory (LSTM) [6] for encoding and decoding a given image. In

these methods, a CNN backbone is first used for feature extraction; Next a RNN encoder is lever-

aged to capture more contextual information and convert the extracted features into a sequence

of features. Finally, a prediction module is used to predict the sequence of characters in the given

input image.

In this regard, several prediction heads were suggested, for example some methods [63, 65,

66] use Connectionist Temporal Classification (CTC) to predict the output characters. Meth-

ods such as [63], employ a VGG model [171] as a backbone to extract features from the input

images, followed by a Bidirectional Long-Short-Term-Memory (BLSTM) [6] for contextual in-

formation, and finally a CTC loss is applied to identify character sequences. Different solutions,

such as those proposed in [27, 64, 145, 147, 149, 150] adopt an attention mechanism [172],

where implicit attention is automatically learned and subsequently enhances the deep features in

the decoding process. Although these methods [63, 66] perform well when the text instances are

horizontally aligned, they fail to recognize curved or rotated text.

To improve the recognition accuracy on irregular input text images (e.g., curved texts), some

methods [27, 64, 65, 67, 94] proposed an extra rectification module e.g., Spatial Transformer
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Network (STN) [11], to handle geometrically distorted text instances. For example, Shi et al.

[64] introduced a spatial attention mechanism to transform a distorted text region into a nearly

horizontal text that is suitable for recognition. In later work, they [27] used a series of con-

trol points within a Thin-Plate Spline transformation to better rectify curved text, and to im-

prove the recognition results on irregular text datasets. However, most of these methods (in-

cluding [27, 64, 67, 94]) require one-dimensional (1D) features; they were not designed for

recognizing irregular-text instances as they cannot keep track of the spatial information within

two-dimensional (2D) images.

On another note, and similar to language modeling, the order of words in a sentence and the

order of characters in a word are essential in scene text recognition. To that end, many recent

transformer-based scene text recognition techniques [202, 203, 237] have used different types of

PE and have outperformed the previous RNN-based state-of-the-art methods [27, 63–67, 93–95]

on many benchmark datasets [71, 77, 79, 81–83, 119, 182]. Example of such methods include

[237] that used a 1D fixed Sinusoidal PE for horizontal handwritten text recognition. Raisi et al.

[203] proposed a 2D SPE (2SPE) to better capture the 2D spatial dependencies among characters

in irregular text. On the other hand, to make the transformer’s encoder more suitable for 2D

inputs, Lee et al. [202] proposed a 2D SPE with adaptive amplitude, which achieved the state-

of-the-art recognition accuracy in the majority of popular scene text recognition datasets; This is

due to its learning capability in adjacent height and width directions. However, these methods

[202, 203] made use of manually selected frequencies, as such they cannot handle variability in

the text data [185].
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Table 6.1: Summary of related abbreviations.

Abbreviation Description

PE Positional Encoding
SPE [1] 1D PE with fixed Sinusoidal frequencies

LPE [236] 1D PE with Learnable weights
LSPE [234] 1D Learnable frequencies SPE
2SPE [203] 2D Sinusoidal PE

2LSPE (Proposed) 2D Learnable frequencies SPE

6.3 Background

6.3.1 Multi-Head Self-Attention

The transformer architecture was initially introduced in [1] for machine translation of natural

language using an attention-based mechanism. This architecture leverages self-attention layers,

which scan through each element of a sequence, and accordingly compute an update by mea-

suring the relationship between this element and the whole sequence [1]. The main advantages

of attention-based models in transformers are their parallel computations suitability at a lower

memory cost, making them more suitable than RNNs [6, 75] for learning from long sequences.

Each self-attention layer (the main defining part of a transformer), is made of an attention

block that allows the model to learn and access information from the past hidden layers. Let

xi ∈ Rd denote the i-th input vector of size d× 1; then a set of t input vectors can be represented

in a matrix form as:

X = [x1, x2, ..., xt]
> ∈ Rt×d. (6.1)

The functionality of the self-attention layer in a transformer can be described as a mapping
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Figure 6.1: Multi-Head Self-Attention layer in a transformer. The above diagram is reproduced
from [234].

between the matrix of input vectors (X) from d (input dimension) to d′ (output dimension) using:

Self-Attention(X) = Softmax (A)XW V , (6.2)

where A is a t× t attention scores matrix that can be calculated as:

A = XWQWK>
X>, (6.3)

and WQ ∈ Rd×d′′ , WK ∈ Rd×d′′ and W V ∈ Rd×d′ represent query, key and value matrices

respectively.

As it can be seen in Figure 6.1, rather than only computing the attention once, the multi-head

mechanism invokes the self-attention mechanism in equation (6.2) multiple times and in parallel,
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which enables the transformer to focus on different parts of the input In multi-head self-attention,

the output of Nh heads (each of dimension dh), are concatenated and projected to a dimension d′

using:

MHSA(X) = concat
h∈1,2,...,Nhe

[
Self-Attentionh(X)

]
W ′ + b′, (6.4)

where W ′ ∈ RNhdh×d′ and b′ ∈ Rd′ are the projection matrix and bias terms respectively.

6.3.2 Positional Encoding

The aforementioned self-attention layer in the transformer is permutation equivarient [96], that

is the order of the input set is irrelevant, and the output result is the same irrespective of the input

order. To tackle this limitation [1], a PE is introduced to modify the input set before feeding its

output to the self-attention module equation (6.2) using:

A = (X + P )WQWK>
(X + P )>, (6.5)

where P ∈ Rt×d denotes the embedding matrix for each position. Several attempts to define P

within the self-attention components were proposed, and can be categorized as relative PE [235]

and absolute PE [1, 185]. In this section, we will focus on the absolute PE category that includes

Sinusoidal PE (SPE) with fixed frequencies and the learned version of PE. Sinusoidal PE (SPE)

with fixed frequencies was first introduced in [1], where the position information P ∈ Rt×d is

defined as follows:

P (x, 2i) = sin
(
x · c2i/d

)
,

P (x, 2i+ 1) = cos
(
x · c2i/d

)
, (6.6)

89



where c2i/d is the i-th fixed frequency, c = 10−4, and x denotes the order in the input set

(x = 0, 1, . . . , t − 1), and i refers to the position along the encoding vector dimension (i =

0, 1, . . . , b(d− 1)/2c) and b·c is the floor operator.

It has been shown in [1, 185] that injecting the position information using equation (6.5) in

each block of the transformer yields better performance. However, for fairness of comparison

against existing methods ([202, 203]), we only consider adding the PE to the first block of self-

attention in the transformer.

The learned version of PE was introduced in [236], where the entire positional information is

learnable (P ∈ Rt×d). However, the fully learnable PE was missing the inductive property, as

it required a fixed maximum length of its input set before training [185]; this can unfortunately

cause generalization issues, especially for a variable length test set.

6.4 Overview on The Proposed Method

Figure 6.2 illustrates the proposed architecture for scene text recognition which is built upon the

standard transformer’s architecture [1]. We can categorize it into two main modules: encoder and

decoder. The encoder’s main role is to extract high-level 2D feature representations of an input

image, whereas the decoder is used to convert these feature maps to a sequence of characters.

6.4.1 Encoder

The proposed encoder module makes use of the Multi-Head Self-Attention (MHSA) mechanism

presented in Section 6.3, along with three main sub-blocks:

(1) CNN Feature Extraction: A CNN first processes the input image to extract a compact feature

representation and to learn a 2D representation of an input image. To that end, we adopt a
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Figure 6.2: The proposed text recognition using transformer architecture, where Ne and Nd

denote the number of layers in the encoder and decoder. Unlike [1], our proposed architecture
utilizes 2D Learnable Sinusoidal Positional Encoding, a ResNet-31 backbone and two layers of
FFN.
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modified ResNet-31 architecture [164] as the CNN backbone. At runtime, all the input images

are converted to grayscale and resized to 32× 100 pixels.

(2) 2D Learnable Sinusoidal Positional Encoding (2LSPE): In this module, the proposed 2D

PE signals are learned, generated and then incorporated within the MHSA process. Further

information about the proposed 2LSPE scheme are detailed in Section (6.5).

(3) Feed-Forward Network (FFN): Here, we use a modified version of the FFN layer in the

original transformer [1] so that it becomes capable of capturing the features generated by the

encoder’s MHSA mechanism. The modified FFN consists of 2 layers of 1× 1 convolutions with

ReLU activations followed by a residual connection.

6.4.2 Decoder

Similar to [1], the decoder module includes 1D SPE, MHSA and FFN layers as shown in Figure

6.2. The decoder’s main role is to use an autoregressive model by attending to the visual features

generated by the encoder to predict the next sequence of characters.

6.5 2D Learnable Sinusoidal Positional Encoding

Let Ii ∈ RH0×W0 denote the i-th training image, where H0 and W0 are the height and width of

each training image, i = 1, 2, . . . , NT , and NT is the number of training images. Each training

image Ii is first processed through a CNN to produce image features of lower resolution, let it be

denoted as Xi ∈ RH×W×d, where d indicates the number of channels, H and W are the height

and width of Xi such that H = H0/η, W = W0/η and η is the downsampling factor. In this case,

instead of the 1D input set as described in Section 6.3.1, we have a 2D feature map that comes

from the CNN. Accordingly, the input is a tensor X of dimension H ×W × d, and for every
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position in the input X , an attention score is used to associate a query and a key at that given

position, thereby constructing the attention score tensor A of dimension H ×W × d′. To keep

the formulas consistent with the 1D case, we slice the tensors as follows: if k ∈ [1, . . . , d], we

write X:,:,k and A:,:,k to refer to the k-th 2D slice of the tensors X and A, respectively. With this

notation in place, each self-attention layer output at slice k can be expressed as:

Self-Attention(X ):,:,k = Softmax (A:,:,k)X:,:,kWV
:,:,k. (6.7)

The above formula also can be extended to the multi-head self-attention mechanism in equa-

tion (6.4). For each position (h,w) ∈ [1, . . . , H] × [1, . . . ,W ], we obtain the proposed 2D

Learnable Sinusoidal PE, P ∈ RH×W×d, as:

P(h,w, 2i) = sin (h · fi) ,

P(h,w, 2i+ 1) = cos (h · fi) ,

P(h,w, 2j + d/2) = sin (w · fj) ,

P(h,w, 2j + 1 + d/2) = cos (w · fj) . (6.8)

where fi, fj ∈ R are the learnable frequencies for the 2D PE signal, h and w specify the hori-

zontal and vertical positions, and i, j ∈ [0, d/4] and d denote the number of channels in the input

X . Similar to equation (6.5), the attention scores can be obtained as follows:

A:,:,k = (X:,:,k + P:,:,k)WQ
:,:,kW

K>

:,:,k (X:,:,k + P:,:,k)
> (6.9)

whereWQ andWK correspond to the weights of query and key tensors, respectively. While the

SPE is commonly used in different transformer architectures for scene text recognition [202, 203,

237], our model foregoes the fixed frequencies and instead can adaptively learn those frequencies

(fi, fj ∈ R) using in a data-driven approach. We show in the next section that learning those
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Table 6.2: Comparing the WRA of some of the recent text recognition techniques using IIIT5k
[79], SVT [77], ICDAR03 [182], ICDAR13 [82], ICDAR15 [71], SVT-P [81], CUT80 [83] and
COCO-Text [119] datasets. The models provided in [67] are utilized for evaluating the methods
in [27, 63–67] on all the datasets, while the model in [202] is tested on COCO-Text dataset. The
rest of the results are as reported by the authors [93–95, 202]. Best and second best methods are
highlighted in bold and underline, respectively, and “–” refers to unavailable results. Our method
outperforms all the other methods on irregular-text.

Regular-Text Datasets Irregular-Text Datasets
Method IIIT5k SVT ICDAR03 ICDAR13 ICDAR15 SVT-P CUT80 COCO-Text

CRNN [63] 82.73% 82.38% 93.08% 89.26% 65.87% 70.85% 62.72% 48.92%
RARE [64] 83.83% 82.84% 92.38% 88.28% 68.63% 71.16% 66.89% 54.01%
ROSETTA [66] 83.96% 83.62% 92.04% 89.16% 67.64% 74.26% 67.25% 49.61%
STAR-Net [65] 86.20% 86.09% 94.35% 90.64% 72.48% 76.59% 71.78% 55.39%
CLOVA [67] 87.40% 87.01% 94.69% 92.02% 75.23% 80.00% 74.21% 57.32%
ASTER [27] 93.20% 89.20% 92.20% 90.90% 74.40% 80.90% 81.90% 60.70%
MORAN [93] 91.20% 88.30% 95.00% 92.40% 68.80% 76.10% 77.40% –
ESIR [94] 93.30% 90.20% – 91.30% 76.90% 79.60% 83.30% –
SCRN [95] 94.40% 88.90% 95.00% 93.90% 78.70% 80.80% 87.50% –
SATRN [202] 92.80% 91.30% 96.70% 94.10% 79.00% 86.50% 87.80% 65.11%
2SPE [203] 89.23% 89.34% 95.85% 93.89% 75.78% 84.34% 84.03% 65.80%
2LSPE (Proposed) 94.75% 90.44% 96.42% 94.09% 80.49% 86.76% 88.19% 73.38%

frequencies help the self-attention module to focus more on spatial dependencies of irregular

text.

6.6 Experimental Results

In this section, we present an experimental evaluation for the proposed method against a select

state-of-the-art scene text recognition techniques [27, 63–67], using recent public datasets [71,

79, 81–83, 119, 182] that cover a wide variety of challenges. All the methods are evaluated using

the Word Recognition Accuracy (WRA) metric [67, 203] that is computed as:

WRA (%) =
No. of Correctly Recognized Words

Total Number of Words
× 100 (6.10)
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6.6.1 Implementation Details

As in [67], we train our model with a combination of images from SynthText (ST) [87] and

Mjsynth (MJ) [88] datasets, where all the input images are resized to 32 × 100 pixels. We train

our proposed method with Ne = 9 and Nd = 6 by a batch size of 192 on four NVIDIA V100

16GB GPUs. We use Adam as an optimizer [238] with the initial learning rate of 3 × 10−4 at

3 × 105 iterations. A ResNet-31 [164] is used as a backbone feature extractor and a union of

the training sets ICDAR13 [82], ICDAR15 [71], IIIT5k [79], SVT [77], and CUT80 [83] are

used for validation purposes. The final model is chosen based on the best recognition accuracy

from the mentioned datasets. For training and validating our models, 36 classes of alphanumeric

characters, 10 digits (0− 9) + 26 capital English characters (A-Z) = 36 are used.

6.6.2 Datasets

Two types of datasets are used for evaluating the recognition results, (1) regular-text recognition

datasets: IIIT5k [79], SVT [77], ICDAR03 [182] and ICDAR13 [82] that mainly contain hori-

zontal text, and (2) irregular-text recognition datasets: ICDAR15 [71], SVT-P [81], CUT80 [83]

and COCO-Text [119], which contain multi-oriented and curved text. These datasets are more

challenging than their regular-text counterparts.

6.6.3 Quantitative Results

Table 6.2 shows a comparison of the WRA for the proposed method versus other methods in

the literature such as [27, 63–67, 202]. We first compare our proposed model with RNN-based

methods [27, 63–67, 202] and show that the proposed 2LSPE outperforms them with a large

margin, it even provides higher WRA values compared to the methods in [93–95] that deploy
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powerful spatial rectification modules in their architectures to better recognize irregular text.

We also compare our method with the recent transformer based methods, namely SATRN [202]

and 2SPE [203] that use fixed frequencies of Sinusoidal PE. Our 2LSPE outperforms STARN

and 2SPE on irregular-text datasets offering high improvement on the challenging COCO-Text

dataset, while maintaining high WRA values on the regular-text ones. We believe that the per-

formance gap on regular text datasets with [202] can be attributed to the use of a deeper CNN

backbone (ResNet-101) in SATRN, while our proposed model uses ResNet-31 to evaluate the

effect of the learnable frequencies based PE. This opens an interesting future work to study the

effect of a deeper network, as used in [202], on the recognition accuracy of the proposed 2LSPE.

6.6.4 Qualitative Results

In Figure 6.3, we provide sample qualitative results for the proposed method when tested on

challenging cases from various datasets (Section 8.4.2). It can be seen that the proposed method

with 2LSPE is able to recognize regular or horizontal text, and irregular text (curved and vertical

text). As it can also be noticed from this Figure, the proposed technique is robust to different

challenging conditions, such as different colors, fonts, orientations, blurriness and backgrounds.

We also show some failure cases of our proposed model in Figure 6.4. These challenging ex-

amples indicate that their is still a room to improve the performance of the proposed scheme by

tackling the challenges of partial-occlusions, illumination variations and geometric distortions.

6.6.5 Effect of Positional Encoding

We have also conducted experiments using the transformer architecture without PE, as well as

with 2D fixed or 2D learnable SPE on the same eight benchmark datasets presented in Section

8.4.2, where Table 6.3 shows the average WRA of these results. First for the transformer without
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Figure 6.3: Qualitative comparison results among CRNN [63], ASTER [27], CLOVA [67], and
SATRN [202] methods, and our proposed method for some challenging examples. These images
are from [71, 79, 81, 83, 119] datasets. Green and red denote characters that are correctly and
incorrectly recognized, respectively.

(a)"iava" (b)"woit" (c)"onlypayteent" (d)"cocacoba" (e)"taglicuar"

Figure 6.4: Qualitative results on some sample images that the proposed method failed to recog-
nize all the characters correctly, which contain the following challenges (a) partial-occlusion, (b)
illumination variation and complex background, (c) alphanumeric, (d) complex font, and (e) ge-
ometric distortion and low resolution. The above images are from the publicly available datasets
[81–83, 239].
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Table 6.3: Comparing the effect of different PE schemes on the proposed transformer’s architec-
ture. Note: transformer’s architecture without using PE causes a significant drop in the average
WRA.

Method Encoder Decoder Average WRA
Without PE MHSA MHSA 80.19%
2SPE [203] 2SPE + MHSA SPE + MHSA 84.78%
Proposed 2LSPE + MHSA SPE + MHSA 88.06%

PE case, we completely remove the positional encoding in the encoder and decoder, without

changing the MHSE and FFN modules; the model achieves an average WRA of 80.19% which

is the lowest performance compared to the other PE based techniques. This low performance is

more observable on irregular-text datasets; Therefore, we conclude that PE is a necessary part to

use in a transformer architecture for scene text recognition.

Next, we apply a 2D positional encoding with fixed sinusoidal frequencies (2SPE), as in

[203], and compare it with our proposed 2LSPE with the frequencies that are learned during

training; As seen in Table 6.3, the proposed transformer with 2LSPE achieves the highest average

WRA compared to the transformer with 2SPE [203] on benchmark datasets; This improvement

in recognition performance for 2LSPE over 2SPE can be attributed to the flexible capability of

the learnable frequencies in complementing the MHSA in a transformer’s architecture through a

data-driven way.

It is worth mentioning that the average recognition inference time in milliseconds per word

for 2LSPE and 2SPE models are 87.7% and 88.8%, respectively, which shows that using 2LSPE

provides slightly better inference time. However, RNN-based methods [27, 63–67] are able

to provide significantly lower inference time compared to the transformer-based architectures

[101, 204].
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6.7 Conclusion

Throughout this work, we have extended the capabilities of a recently proposed positional en-

coder with learnable sinusoidal frequencies from one-dimensional to a two-dimensional format.

Moreover, we show how to incorporate the learned positions within the multi-head self-attention

(MHSA) of the transformer’s architecture for scene text recognition.

To evaluate the proposed system, we first report on its WRA results and compare them with

two recent transformer-based methods and eleven state-of-the-art RNN-based techniques. Ex-

perimental results further show that the proposed model has achieved the state-of-the-art WRA

performance on five out of eight benchmark datasets. Furthermore, the effect of different PE

schemes on the transformer’s architecture has been studied. The proposed 2D sinusoidal PE

technique with learnable frequencies has outperformed the baseline method that uses fixed PE

frequencies in terms of recognition accuracy in all cases.

In the previous Chapters, we separately addressed text detection (Chapter 4 & Chapter 5) and

recognition (Chapter 6) for irregular text instances. However, reading text in the wild require both

detection and recognition modules. In the following Chapter (Chapter 7), unlike SOTA methods

that combine two different pipelines of detection and recognition modules for a complete text

reading, we propose a different model that reads characters from the wild images. We utilize

a similar detector as in Chapter 4 with a multi-scale feature extraction backbone to capture any

character shape in the given input image. We also discuss our interest in character detection and

recognition rather than word spotting in the wild images.
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Chapter 7

End-to-End Text Detection and

Recognition Using Transformers

This chapter utilizes a transformer-based object detection framework, namely Detection using

Transformers (DETR), to detect and recognize at the same time the characters in unconstrained

environments (i.e., in the wild), which offers simpler and robust end-to-end architecture than

the previous methods. The proposed framework leverages an adaptive feature extraction to bet-

ter focus on the position of character regions and a bounding box loss function that is more

precise in detection and recognition of characters with different scales and aspect ratios. We

conduct experiments on the ICDAR13 benchmark dataset designed explicitly for character-level

text detection to evaluate our proposed architecture’s effect. Experimental results show that the

proposed method outperforms the state-of-the-art detectors.
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7.1 Introduction

Reading of text in a scene requires two stages: locate the text and then recognize the charac-

ter in the detected regions, which are called scene text detection and scene text recognition.

Some methods combine these two stages, which leads to an end-to-end detection and recogni-

tion (scene text spotting) [59, 60, 100, 101, 240]. Inspired by deep-learning frameworks like

Convolutional Neural Network (CNN) [164, 171] and Recurrent Neural Network (RNN) [6],

many end-to-end scene text detection and recognition methods [59, 62, 100, 149, 241] proposed.

Some of these methods achieved superior performance end-to-end text detection and recognition

at word-level in different benchmark datasets [71, 72, 86]. However, these CNN and RNN based

methods require several handcrafted components such as anchor generation, non-maximum sup-

pression (NMS) in regression-base methods, or multiple processing stages (e.g. label generation)

in segmentation-based method to detect following by a rectification module before to output

the sequences of characters using RNN. Furthermore, Some of these models, as described in

[101, 102] show poor performance when characters in the text are vertical or partially occluded.

As mentioned above, previous end-to-end scene text detection and recognition approaches

aim to output word instances whose primary components are characters. Therefore, we aim to

design a simple and end-to-end framework that directly and precisely extracts the characters from

the given image and then combines the extracted characters to form the final word. To achieve

this goal, we utilize state-of-the-art transformer-based techniques that alleviate the issues of pre-

vious CNN-based methods. detection and recognition the text at character level by using an

end-to-end transformer architecture eliminates the complexity of detection and recognition on

different architectures. It also removes the need for rectification module [11, 27, 101] for detec-

tion and recognition arbitrary-shape text instances as used in many end-to-end words detection

and recognition methods [59, 60, 100, 240].
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Transformer [1] is an attention-based pipeline that, after achieving superior performance in

sequence modelling and machine translation tasks [242], recently emerged in many computer

vision fields and achieved state-of-the-art results in many benchmarks [204, 243]. Current state-

of-the-art object detectors [96, 201, 244–246] mainly inspired by self-attention mechanism in

transformers outperformed prior Convolution Neural Networks (CNN) models [247]. For ex-

ample, Detection using Transformer (DETR) [96], was the first transformer-based detector that

introduced a new concept for object detection framework. DETR uses a new technique called

object queries and task object detection as a set prediction problem [247]. In contrast to other

detectors, it removed the need to design hand-designed components like anchor design and non-

maximum suppression (NMS) post-processing and directly detects objects in the given image

using so-called object queries. However, DETR has low accuracy on small objects and slow

convergence during training [201, 247].

Many recent works proposed efforts to alleviate the issues mentioned for [96], for example,

Deformable-DETR [201] aims to design data-dependent sparse attention to address the small

object detection problem of [96] and achieved higher precision performance and fewer training

epochs. Pyramid Vision Transformer (PVT) [244] is a hierarchical pure transformer backbone

that achieved superior performance in classification, object detection, and segmentation tasks.

PVT utilizes a non-overlapping patch partition followed by a linear patch embedding to reduce

the sequence length in the given input and preserve the fixed channel dimensions. This backbone

can be accompanied by a transformer framework like [96] to predict dense objects efficiently.

Sparse R-CNN [245] proposed a sparse algorithm for object detection without relying upon

dense candidate regions. In order to detect objects, it first generates a random sparse set of boxes

and then iteratively performs classifications and detection of the candidate boxes. In a recent

work, Deformable Patch-based Transformer (DPT) [246] presented DePatch that adaptively split

images in a data-driven way which address the problem of PVT [244] that uses the predefined

fixed-patched. DePatch forces the network to concentrate on desired object regions and extract
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Figure 7.1: The proposed end-to-end character-level text detection and recognition framework
[2].

more semantic formations in patches with different positions and scales. DPT achieved state-of-

the-art performance on image classification and object detection.

In this chapter, we only focus on character detection and recognition by leveraging the DETR

[96] as our baseline detector. The contribution of these works are: (1) We propose a new trans-

former based model based on [96] by modifying its feature extraction backbone and predic-

tion head by leveraging a robust bounding box loss function. (2) We compare state-of-the-art

transformer-based methods on detection and recognition the characters of the wild images with

our proposed architecture. (3) We provide quantitative and qualitative results to show the perfor-

mance of our proposed model.

7.2 Methodology

Figure 7.1 shows the proposed architecture. The framework of our proposed method mostly

follows the encoder-decoder detector form [96]. The network first adaptively extracts image fea-

tures using a DPT-Small [246] backbone from different small patches; The resulting feature set

is passed to a transformer encoder. For decoding, a fixed set of learned embeddings called object

queries are passed through a transformer decoder. The feature vectors tests obtained are fed to

shared fully connected layers that directly predict each query’s class and bounding box set. The

Bipartite matching loss is used for training the network, which leverages the Hungarian matching
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algorithm [194] for comparing and establishing a one-to-one mapping between N queries and

N ground-truths [96]. The prediction head outputs rectangular bounding boxes b = [x, y, w, h]>

can encase the character region by simplifying defining (x, y) as the bounding box’s center point

coordinates, and w, h representing the box’s width and height respectively. To train the network,

we also modify the prediction head, along with the loss and matching functions as described in

below.

Loss Function: The bounding box loss function of [96] uses a linear combination of `1 and GIoU

loss. Let b̂i and bj denote the ith predicted and jth ground truth bounding boxes, respectively,

then we define our loss function as:

Lbox(b̂i, bj) = λ1Lreg(b̂i, bj) + λ2Lα−GIoU(b̂i, bj) (7.1)

where λ1 and λ2 ∈ R are hyper-parameters, and Lreg(·) and Lα−GIoU(·) are the rectangular

bounding box loss functions based on regression and α−GIoU. The intuition behind using

α−IoU loss is that it improves the average precision performance of small and large characters,

converging faster on small datasets during training. The α−GIoU is defined as [248]:

Lα-GIoU = 1− IoUα + (
|C \ (b̂i ∪ bj)|

|C|
)α, (7.2)

where Lα-IoU = 1 − IoUα, C denotes the smallest convex shape enclosing bi and b̂j . In our

experiments, the α = 3 showed better performance (See §7.3 for more detail).

For regression, we use the Smooth-ln based Regression Loss as in [2], which is more robust

to the variation of scales and ratios in different character instances than the `1 used in [96]. The

regression loss is then defined as:

Lreg(b̂i, bj) = (|b̂i − bj|+ 1) ln(|b̂i − bj|+ 1)− |b̂i − bj| (7.3)
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where | · | demonstrates the absolute operator

7.3 Experimental Results

In this section, we first compare our proposed method with state-of-the-art transformer-based

detectors and then present some qualitative results to show the model’s performance. Finally, we

provide an ablation study to investigate the effect of the different components in the proposed

pipeline.

Implementation Details: We adopt the DETR’s [201] architecture as our main framework with

a DPT-small [164] backbone for feature extraction. The number of object queries are set to 300

and AdamW [211] optimizer is used to optimize the parameters of the model. We use horizontal

flip and resize the images similar to [96] for augmentation. We first pre-train our proposed model

and methods in comparison on 100k images of Synth-text [87] with character level annotations

for 8 epochs and then fine-tuned on the ICDAR13 dataset to ensure the training converges. We

train our model with a batch size of 2 per GPU using 4 Tesla V100 GPUs and a learning rate

(LR) of 1 × 10−4. The pre-training of our proposed model on Synth-text datasets takes ∼ 20

hours, and fine-tuning takes ∼ 3 hours.

Datasets: The ICDAR13 dataset [82] is a benchmark dataset that includes both word-level and

character-level annotations using rectangular boxes containing 229 and 233 images for training

and testing. Most of the text instances of this dataset are horizontal and high-resolution. Since

ICDAR13 is a well-known benchmark dataset that contains character-level annotations, we con-

duct our experiment on this dataset. However, we provide some qualitative sample results on

other arbitrary-shape text datasets including Total-Text [72] and CTW-1500 [86] to better show

the performance of our proposed model.
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Table 7.1: Comparing the character detection and recognition performance of our proposed meth-
ods with state-of-the-art detectors [96, 244–246] on ICDAR13 [82] dataset.The best performance
is highlighted in bold.

Model-Name AP AP50 AP75 APs APm APl epochs
DETR [96] 0.49 0.78 0.57 0.48 0.58 0.41 700
PVT [244] 0.57 0.83 0.68 0.55 0.67 0.53 200
Sparse R-CNN [245] 0.59 0.80 0.70 0.49 0.69 0.65 200
DPT [246] 0.62 0.86 0.76 0.61 0.68 0.58 200
Proposed 0.66 0.89 0.78 0.64 0.72 0.63 200

Evaluation Metric: To our best knowledge, this is the first work that focuses on character detec-

tion and recognition; there is no evaluation metric to measure the performances of the predicted

characters in the scene text detection community. Nevertheless, we can task characters as differ-

ent classes of objects; Thus, we can use mean average precision (AP) as our evaluation metric

adopted as a standard in many recent object detection algorithms to detect and recognize 36

alphanumerical (10 digits + 26 capital) characters directly in the images.

Quantitative Results: To evaluate the performance of the proposed method, We compare it with

DETR [96], PVT [244], Sparce R-CNN [245], and DPT [246]. The quantitative comparison

is shown in Table 7.1. Our proposed method outperformed the state-of-the-art detectors by a

large margin,∼ 4% compare to the best detector in AP performance. It also performed better

in the detection and recognition of small, medium, and large characters. The baseline DETR

[96] not only performed poorly on small and large characters, but it also required more training

epochs to converge on the ICDAR13 dataset. On the other hand, with a lower number of training

iterations, PVT significantly outperforms DETR by ∼ 8%. While Sparce-RCNN outperformed

the PVT in overall AP by∼ 2% in reading better of medium and large characters, it showed poor

performance in detection and recognition of small characters. In contrast, DPT performed better

in small character detection and recognition and achieved the second-best performance in terms

of AP.

106



Table 7.2: Ablation study of our model using different components. The models trained only on
the train set of ICDAR13 and no synthetic images used for pre-training. The best performance
of our model is shown in bold . We also show the best performances in the ablation studies of
Backbone and Bounding-box-loss (different αs) experiments with red and blue, respectively.

Model Backbone Bounding-box loss AP
Baseline ResNet50 GIoU+`1 0.410
Baseline-2 PVT-Small GIoU+`1 0.460
Baseline-3 DPT-Small GIoU+`1 0.480
Baseline-3 (α = 0.5) DPT-Small α−GIoU+`1 0.474
Baseline-3 (α = 2) DPT-Small α−GIoU+`1 0.486
Baseline-3 (α = 3) DPT-Small α−GIoU+`1 0.511
Baseline-3 (α = 4) DPT-Small α−GIoU+`1 0.488
Baseline-3 (α = 5) DPT-Small α−GIoU+`1 0.462
Proposed (α = 3) DPT-Small α−GIoU+Smooth-ln 0.520

Qualitative Results: Figure 7.3 shows the qualitative results on some challenging sample im-

ages. As seen, the proposed model is robust in detection and recognition small, medium, large

and even complex fonts characters compared to the baseline model. It also performed well on

detection and recognition of partially occluded and oriented characters as shown in Figure 7.3(b)

and Figure 7.3(c), respectively.

To see the generalization ability of the proposed method, we also provided some qualitative

result of arbitrary-shape text of Total-text [72] and CTW-1500 [86] datasets, where model was

agnostic to the text instance of them. As shown in Figure 7.2 the model was able to detect and

recognize precisely the characters in various text instances of the given images.

Ablation Study: To assess the added value of the various components in our model, we per-

formed an extensive ablation study on ICDAR13 datasets. Table 7.2 summarizes the obtained

results.

We started the experiments by baseline model that uses a ResNet-50 backbone for feature

extraction, GIoU+`1 loss for bounding box regression; the model achieved an AP performance
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Figure 7.2: Qualitative results of the proposed method in out of distribution samples from Total-
text [72] and CTW-1500 [86] datasets. The proposed method detects characters in arbitrary-
shape text instances. The above images are from the mentioned public benchmark datasets [72,
86].
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Baseline
Proposed

(a) Different font styles (b) Partially occlusion (c) Oriented

Figure 7.3: Qualitative comparison of the baseline [96] and proposed methods on some of the
challenging images of the ICDAR13 public benchmark dataset [82]. Best viewed when zoomed.

of 0.41. We then replaced the backbone with PVT-small yielding an AP=0.46, which outper-

formed the baseline; We found that using DPT-small as backbone led to further performance

boost compared to PVT-small backbone.

To evaluate the sensitivity of our proposed loss function in the detector’s performance, we

then continued our experiments with different values of α in equation (7.2) in combination of

the baseline `1 loss on the ICDAR13 dataset. As shown in Table 7.2, the baseline-3 model with

(α = 3) achieved the best performance (AP=0.511). It is worth mentioning that, when α < 2

(e.g., α = 0.5) or α > 4 the AP performance decreased compared to the baseline-3 model that

used (α = 1)−GIoU. The AP improvement in Table 7.1 (seeAPs andAPl columns respectively)

confirm the the effectiveness of using α−GIoU in detecting of small and large characters.

We finally replaced the baseline regression bounding-box loss (`1) with Smooth-ln as shown

in equation (7.3). The Smooth-ln in combination with (α = 3−)GIoU loss achieved the best

performance on the ICDAR dataset by outperforming the baseline DETR model [96] by ∼ 11%,

which uses GIoU and `1 losses and fewer iteration during training; the proposed model also

improved the SOTA detection model (Baseline-3) by a large margin of ∼ 4% (See Table 7.1 and
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Table 7.2 for more details).

7.4 Conclusion

This chapter has leveraged a new end-to-end transformer-based architecture for character detec-

tion and recognition in the wild images. The proposed method has leveraged Deformable-Patch

(DPT) as a feature extraction backbone and a bounding box loss function for reading charac-

ters with different sizes, scales, and aspect ratios in the wild images. To evaluate our proposed

method’s performance with that of the state-of-the-art object detection approaches, we used the

ICDAR13 benchmark dataset. Experimental results have shown that the proposed method out-

performs the state-of-the-art methods, including the recent transformer based detectors, in terms

of mean average precision. Our end-to-end robust character level detector is an essential step

towards the word or text-line detection, which remains part of our future work.

Since occlusion happens at the character level, characters are the main components to be

predicted from the text instances in the wild. In the next Chapter (Chapter 8), we extend the

proposed framework in this Chapter for addressing the occluded-text challenge. We leverage

a recent transformer-based framework in deep learning, Masked Auto Encoder (MAE), as a

backbone for scene text recognition and end-to-end scene text detection and recognition pipelines

to overcome the partial occlusion limitation.
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Chapter 8

Occluded Text detection and Recognition

in the Wild

The performance of existing deep-learning scene text recognition-based methods fails signifi-

cantly on occluded text instances or even partially occluded characters in a text due to their re-

liance on the visibility of the target characters in images. This failure is often due to features gen-

erated by the current architectures with limited robustness to occlusion, which opens the possi-

bility of improving the feature extractors and/or the learning models to better handle these severe

occlusions. In this work, we first evaluate the performance of the current scene text detection,

scene text recognition, and scene text spotting models using two publicly-available occlusion

datasets: Occlusion Scene Text (OST) that is designed explicitly for scene text recognition, and

we also prepare an Occluded Character-level using the Total-Text (OCTT) dataset for evaluating

the scene text spotting and detection models. Then we utilize a very recent transformer-based

framework in deep learning, namely Masked Auto Encoder (MAE), as a backbone for scene text

detection and recognition pipelines to mitigate the occlusion problem. The performance of our

scene text recognition and end-to-end scene text spotting models improves by transfer learning
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on the pre-trained MAE backbone. For example, our recognition model witnessed an average im-

provement of 4% word recognition accuracy on the OST dataset compared to the baseline model.

Our end-to-end text spotting model achieved 68.5% F-measure performance outperforming the

stat-of-the-art methods when equipped with an MAE backbone compared to a convolutional

neural network (CNN) backbone on the OCTT dataset.

8.1 Introduction

Text can be occluded by itself or by an external object (Figure 8.1). Occlusion in each level

can affect the performance of both detection and recognition algorithms, and due to the lack

of specific real-world occluded text datasets this problem remained one of the open issues in

the field of scene text detection, and recognition [67, 101, 249]. Although several remarkable

breakthroughs have been made in the recent deep-learning pipeline, the accuracies of existing

scene text detection and recognition methods [27, 57, 58, 67, 101, 203] suffer from the amount

of occlusion that can occur to the target text in the wild images, where text can be occluded

by itself or other objects. This is due to the current deep learning methods assuming training

and testing data are sampled from the same distribution, and the large variability of occluders

introduces a distribution gap that can lead to false detection or recognition. Figure 8.1 illustrates

several examples of partially occluded text instances that can appear in the wild images.

There are some classical algorithms [251, 252] that attempt to address the partial occlusion in

Optical Character Recognition (OCR). For example, Chang et al. [251] proposed a patch-based

restoration algorithm to fill the occluded part of watermark characters before recognition. Pham

et al. [252] proposed an algorithm for occluded number recognition. They first used SURF [253]

to extract futures of the input number image and then compare the extracted future coordinates

with the interest points of a database cluster. However, these algorithms are only applicable to

OCR documents with clean backgrounds, and they mainly target addressing the watermark and
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WATERMARK

WATERMARK

Figure 8.1: Examples of partially occluded text in the wild images. In most wild images, oc-
clusion happens when an external object or illumination blocks a portion of some characters and
when a part of a character is missing. Images are taken from the public benchmark datasets in
[82, 119].

removing or restoring the missed parts of characters. Furthermore, they need prior knowledge

like character stroke width makes them insufficient for occluded text spotting in the wild.

One way to address the partial occlusion problem is to use a compositionality approach,

which is defined as understanding complex phenomena by breaking them into simpler parts. Us-

ing this approach, we can increase the generalization capability of a given classifier by tackling

unseen scenarios. In other words, new representations can be constructed through the combina-

tion of primitive elements [254]. For example, in [255] they proposed a compositional frame-

work that recognizes characters from their small parts of lines in handwritten characters, which

achieved promising performance on the datasets that they used. However, this framework re-

quires human interaction for creating strokes of characters. Rather than part-level semantic rep-

resentation, the approach proposed in [256] learns how to represent CNN features better using
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YARMINES

_ARMINES

…..

ARATULISTINE

TAFE

GARMINES

_ARMINES

CARMINES

CARMINES

KDNY
MHATULISTIWA

CAFE

FDNY
KHATULISTIWA

CAFE

Figure 8.2: Comparison of the effect of partially occluded characters on the state of the art end-
to-end scene text spotting models on some sample of Total-Text dataset [72]; results of character-
based text spotting model [250] in (a) without occlusion and (b) with occlusion, and (c) shows
results of [100] on occluded text instances. The “cyan” arrow, “green”, and “red” characters in
yellow text denote the occluded characters, correctly recognized and missed characters by the
models, respectively [We replicated these results using the pre-trained models in [100, 250]].
Best viewed in color when zoomed. The above images are taken and reproduced form the public
benchmark dataset [72].
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object compositionality to provide a more generalizable model. Some recent methods [257–259]

applied compositionality combined with CNN to make its model more robust for the detection

of occluded objects. However, applying the compositionality idea to the current deep-learning

architectures is more complicated. In addition, compositionality requires part-level annotations

with human collaboration, which is expensive.

Masking was already introduced in the Natural Language Processing (NLP) community for

concealing the input tokens to learn a strong bi-directional representation as in [260] and handle

the visual and language task as in [261]. Recently, a transformer-based network, namely Masked

Auto-encoders (MAEs), was proposed in [7] for masking a significant portion of the input image

(∼ 75%) and reconstructing the missing pixels. MAE achieved state-of-the-art (SOTA) perfor-

mance in unsupervised and supervised computer vision tasks, like classification, detection, and

segmentation [7, 262]. Recently several text recognition algorithms [263, 264] utilized the mask-

ing idea in combination with language models in their recognizer to to fully exploit the external

language priors [263–265]. For example, Wang et al. [264] proposed a language-aware visual

mask that achieved good performance in recognizing partially masked characters. However,

these models are not explicitly designed for occlusion problems and require pre-trained language

models during training and testing.

Since we can view the occluded text as a problem whose elements are masked, we apply the

above MAE as a backbone for extracting more semantic features to address the challenging oc-

cluded text problem. In this work, we first leverage a pre-trained MAE backbone as the feature

extractor in our transformer-based recognition architecture to predict the sequence of charac-

ters without using any language models. Then, unlike the current scene text spotting methods

[59, 100, 231, 266, 267] that combine detection and recognition frameworks for final word out-

putting, we propose a new end-to-end scene text spotting pipeline by leveraging the MAE and

Detection using Transformers (DETR) frameworks [7, 96, 201, 262] to directly predict charac-

ter and word instances from a given image. Since occlusion usually happens to characters of
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the text instances in the wild images, we argue that this framework can better solve the occlu-

sion challenge compared to previous end-to-end scene text spotting methods [100, 266, 267] that

have a distinct separation between the detection and recognition branches (See Figure 8.2). Our

contributions are as follows:

1. We evaluate and compare the performance of several SOTA scene text detection and

recognition methods on partially occluded text instances.

2. We prepare an occluded dataset using Total-Text [72] dataset with annotation at the char-

acter level (See §8.4.2).

3. We propose an end-to-end scene text spotting architecture of a given image without using

word-cropped image instances. This model achieves SOTA performance in occluded text

instances by leveraging a pre-trained masked backbone [7].

4. We design a multitask prediction head for the end-to-end method that outputs character

classes, bounding boxes, and bounding boxes for the word instances.

5. Our proposed end-to-end framework also outputs polygon representations for word in-

stances, which alleviates the need for accurate annotations such as polygons annotations.

8.2 Related Work

8.2.1 Scene Text Recognition

In scene text recognition (STR), the goal is to convert the patch of cropped word images into a

sequence of characters. By using deep learning frameworks, researchers proposed many STR

techniques that achieved significant performance in benchmark datasets [71, 77, 79, 81–83].

Previous deep-learning recognition methods [63, 66] have utilized convolutional neural net-

work (CNN) as a feature extractor [164] and Recurrent Neural Networks (RNN) [6, 67, 75] for
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capturing sequential dependencies. Early methods [63, 66] first extract the sequential visual fea-

tures using CNN and RNN blocks. Then a Connectionist Temporal Classification (CTC) [169]

decoder maximizes the probability of all paths of extracted features for final prediction. These

methods performed well on the horizontal and near-horizontal images of benchmark datasets

[79, 82, 182]. Later, by utilizing the attention mechanism in the RNN framework and using rec-

tification modules [11, 94], many approaches [27, 64, 67] improved the accuracy of recognizing

multi-oriented and curved text instances in several benchmarks. For example, in ASTER [27], a

rectification module first makes the highly curved text instance into regular and near-horizontal

text, helping the RNN-based recognition pipeline to capture the linguistic information of arbi-

trarily shaped text instance better.

In the past few years, with the success of the transformers [1] in natural language processing

and computer vision fields [193, 204, 224], several transformer-based pipelines proposed in STR

that achieved superior performance in benchmarks [202, 203, 243, 263, 268]. For example,

methods in [202, 203, 243, 268] proposed a 2D positional encoding with via improvement in

the transformer’s [1] architecture to make it suitable for the arbitrary shape of text recognition.

Recently, some other transformer-based algorithms incorporated semantic knowledge into a text

recognizer to fully exploit the external language priors [263–265]. For example, a new language

model proposed by Fang et al. [263] that utilizes semantic information in their architecture in

order to guide the recognition network and improve the final accuracy.

Existing methods in scene text recognition rely on the visibility of all the target characters in

the given input image to form an accurate word instance as output. Nevertheless, text affected

by heavy occlusion may significantly undermine the performance of these methods [27, 63–67].

This failure is often due to features generated by the current CNNs architectures that have lim-

ited robustness to occlusion, which opens the possibilities to either improve the feature extractors

and/or the learning models to handle better these severe occlusions (more details in §8.4.4). Nev-

ertheless, some methods have recently tried to take advantage of the transformers’ capability and
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language models to address the partially occluded problem. For example, Wang et al. [264] pro-

posed a language-aware visual mask that achieved superior performance. The proposed method

occludes selected character regions during the training phase to enhance the text instances’ visual

clues in the given word image. They proved that combining visual clues and semantic knowledge

improves the STR performances.

8.2.2 Scene Text Spotting

Scene text spotting, also called end-to-end scene text detection and recognition is one of the

challenging problems in computer vision filed [9, 59, 60, 100, 231, 266, 267, 269]; In this task,

the goal is to simultaneously localize and read the sequence of characters from a given image.

Existing methods [9, 59, 60, 100, 231, 266, 267, 269] usually use two separate modules between

the detection and recognition branches, requiring accurate annotations for the two tasks.

Early methods [269] aimed to read regular text from the wild images. For example, Li et al.

[269] proposed the first deep-learning-based end-to-end scene text spotting technique by inte-

grating the detection and recognition modules into a unified end-to-end framework. This method

uses a shared backbone encoder, and RoIPooling [9] to feed the detection features into the recog-

nition head via a two-stage framework. Liu et al. [60] proposed an efficient training framework

by leveraging RoIRotate and adopted an anchor-free mechanism to extract more robust features

and improve the inference speed.

Recently, several methods [59, 100, 231, 266, 267] proposed to read irregular text instances.

For example, to focus more on arbitrary-shaped text regions, RoiMask proposed in [266]. Liu

[100] proposed fitting a Bezier curve for arbitrary-shaped text detection joint with a BezierAlign

module for rectification of curved text instances before the recognition framework. There are also

efforts in [149, 270, 271] to detect and recognize characters and group them as word instances

in the scene images. For example, CharNet [149] designed a weakly-supervised technique to
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predict individual characters and text bounding boxes using text instance detection results and

grouping the predicted character boxes to form the final word results. Baek et al. [271] used

the special character region features from the detector module as input to the attention-based

recognizer module to spot arbitrary-shaped text instances accurately. In a different work, Raisi

et al. [250] leveraged Detection using a Transformer’s (DETR) architecture to directly detect

and recognize individual character classes from scene images. More recently, Kittenplon et al.

[272] introduced TextTranSpotter (TTS), by utilizing Deformable-DETR’s [201] architecture for

scene text spotting by proposing a multi-task prediction head that predicts both detection and

recognition outputs.

Although scene text spotting approaches benefit the two detection and recognition modules

respectively, they are not exceptional dealing with occluded text reading as text recognition mod-

els. As shown in Figure 8.2(c), SOTA scene text spotting methods [100, 250] fail to read the

occluded characters. This failure also is more evident in methods that use attention-based mod-

ule as recognizers (Figure 8.2(c)). In §8.4.4, we show how a small portion of occlusion in one

character can affect the final scene text spotting performance.

8.3 Methodology

8.3.1 Occluded Scene Text Recognition

We utilize MAE [7, 262] as our feature extraction backbone, which is based on a standard the

transformers [1] architecture, namely ViT [273]. MAE has an asymmetric encoder-decoder

pipeline where the encoder takes the randomly unmasked (visible) patches of the given input

image. The decoder reconstructs the missing pixels of the target image. Masking a large portion

(∼ 75%) of the input image make it robust in many supervised and unsupervised tasks due to its

powerful capability of hidden representation [274].
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We adopt an upgraded framework in [268] as our central scene text recognition architecture.

The intuition behind using this architecture is that it is simple, and we can easily fit the pre-

trained MAE in its pipeline. In our proposed scene recognition pipeline, we first fine-tune the

pre-trained version of MAE (ViT-Base) [7] on 36 classes of cropped characters of Synth-Text

[87], We then remove the decoder, use the MAE encoder as our feature extraction backbone, and

add the rest recognition modules to recognize the sequence of characters.

8.3.2 Occluded End-to-End Scene Text Spotting

Architecture. The overall pipeline of our proposed method is shown in Figure 8.3, which uses a

pre-trained backbone of MAE and an upgraded Deformable-DETR [201] detector on top of that.

We select the Deformable-DETR framework [201] as our baseline detector due to its simple

and powerful capability of detection as well as its good performance in many recent scene text

detection [275, 276] and spotting [272] methods. As shown in Figure 8.3, the network split the

input image I = H × W × C, with height H , width W , and C channels into a sequence of

2D fixed-size patches with shape of N × (P 2 × C), where N = HW/P 2 is the number of

patches with resultion of (P, P ). Next, we use a pre-trained encoder model of MAE [7] that use

a ViT Transfromer (ViT B/16) as our Network’s backbone to extracts the 2D features from these

input patches. However, unlike a conventional CNNs like ResNet [164] with multi-scale feature

maps used in [201], the ViT encoder in MAE [7] has a ”columnar” structure [244] and generates

a single-scale features f specifically designed for classification tasks, make it unsuitable for

our character detection that require multi-scale features. To address this problem, we follow

the [262, 279] to leverage the idea of upsampling or downsampling into the intermediate ViT’s

feature map with d block by using four modules that produce multi-scale features for the given

resolutions input.

As shown in Figure 8.3, the first block’s output feature map is upsampled by a factor of
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Figure 8.3: Our proposed architecture for end-to-end scene text spotting. “TrConv” means trans-
posed convolution. The ViT backbone is modified from [262]. “GN” and “GELU” denote Group
Normalization [277] and Gaussian Error Linear Units [278], respectively. Our main contributions
to this architecture are proposing a multi-task prediction head and leveraging a multi-scale pre-
trained MAE as the backbone (See §8.3.2 for details). The right and left images are reproduced
from the publicly available benchmark dataset [72].
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4, resulting in f1. The next d/4 block’s output is upsampled by 2, producing f2. The next

d/4 block’s output is remained unchanged, generating f3 = f , and the final block’s output is

downsampled by a factor of 2 producing f4. The resulted multi-scale features {f1, f2, f3, f4}

produce multi-scale feature maps contain the strides of 4, 8, 16, and 32 pixels concerning the

input image, which are then fed into the upgraded [201] detector.

Different from [262] that uses Feature Pyramid Network (FPN) [5], we eliminate it because

the [201] detector can be naturally extended to aggregate multi-scale features without the utiliz-

ing of FPN. We upgrade the detection head of Deformable-Detr, making it suitable for end-to-end

scene text spotting. Our model’s prediction head can generate the class and bounding boxes of

characters and the rectangular bounding boxes of the word instances by using a loss function

described as follows.

Multi-task Prediction Head. Inspired from [96, 201, 245, 272, 276] to allow the transformers’

architecture to predict the characters and words of a text regions, we propose a loss function

based on the optimal bipartite matching between N predicted ŷ and ground-truth y capable it for

finding the one-vs-one matching σ̂ using the Hungarian algorithm [194] tailored to the task at

hand as follows:

σ̂ = arg min
σ∈SN

N∑
i

Lmatch(yi, ŷσ(i)), (8.1)

where SN denotes the set of possible matches.

Lmatch(y, ŷσ(i)) = −αcp̂σ(i)(ci)− αwp̂σ(i)(wi)+

1{ci 6=∅}α
c
boxLcbox(bi, b̂σ(i)) + 1{wi 6=∅}α

w
boxLwbox(ti, t̂σ(i)), (8.2)

where ci and wi denote ground truth class for the characters and word instances, p̂σ(i)(ci) and

p̂σ(i)(wi) are the predicted probability for class ci and class wi. bi and ti denote the bounding box

of character and word instances, and αc, αw, αcbox and αwbox are the weights for the character clas-
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sification, word classification, character bounding box, word bounding box criteria, respectively.

Then we define the Hungarian loss function LHung as follows:

LHung(y, ŷ) =
N∑
i=1

−βc log p̂ ˆσ(i)(ci)− βw log p̂ ˆσ(i)(wi)+

1{ci 6=∅}β
c
boxLcbox(bi, b̂σ̂(i)) + 1{wi 6=∅}β

w
boxLwbox(ti, t̂σ̂(i)) (8.3)

Where βc, βw are classification weights of characters and words. βcbox and βwbox denote the weights

of character and word bounding box. L(.)
box which is defined as a linear combination of a Smooth-

ln based regression loss [2] and Generalized Intersection over Union (GIoU) loss [195] as pro-

posed in [96].

Arbitrary-shaped Text Representation. As shown in Figure 8.4, during inference time, using

the coordinates of character bounding boxes and the predicted word boxes, we can also output

a polygon representation for each word instance in a given image without using any polygon

annotation during training. We start from the top-left points of the first character, use the top-

middle points of the central characters, and end with the top-right points of the last character.

We also repeat this process by using the bottom-left, bottom-middle, and bottom-right points to

generate the bottom polygon using the first, middle, and last characters, respectively.

8.4 Experimental Results

8.4.1 Implementation Details

We train all our final STR and scene text spotting models on 4 GPUs of NVidia A100, and we

use a pre-trained encoder backbone of MAE (ViT-Base/16) [7] and fine-tune it more on 1M

cropped alphanumeric characters of [87]. We follow the same setting of [268, 280] to train our
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Figure 8.4: Creating a polygon representation for the arbitrary shape of word instances (black
and blue lines) using the bounding box coordinates of the detected characters.

STR model. For the scene text spotting model, we set the number of object queries to 300 and

use an AdamW [211] optimizer to optimize the parameters of the model. For augmentation, we

use different rotation angles [90◦, 180◦, 270◦], and resize the input image as in [201]. We train

this model using a batch size of 2 for 24 epochs on the synthetic character and bounding box

annotations of [87] and then fine-tune on the real-world dataset for 300 epochs with a learning

rate of 1× 10−4.

8.4.2 Datasets

Occlusion Scene Text (OST) dataset is a new benchmark dataset that is prepared to evaluate

the performance of STR methods for occluded text recognition [264]. OST consists of manually

occluded images of six well-known public benchmark datasets: IC13 [82], IC15 [71], IIIT5K

[79], SVT [77], SVTP [81] and CUTE80 [83] datasets. This dataset has 4832-word images of a

weak and heavy level degree of occlusion, which in each image at least one character randomly

occluded by using one or two lines; these lines have a similar background color to the characters
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Heavy Cropped Word Occlusion

Weak Cropped Word Occlusion

(a) (b)

Figure 8.5: Examples of manually occluded text instances; Images in (a) are cropped words in
the publicly available OST [264] dataset with heavy and weak occlusion, and images in (b) are
occluded text images of the OCTT dataset. “Weak” and “heavy” denote the degree of random
occlusion using one and two lines to cover the characters, respectively. The images in (b) are
reproduced from the benchmark dataset [72]. All the images in above are from public benchmark
dataset available in [264].

to make the occlusion more realistic. Figure 8.5(a) illustrates some sample images of the OST

dataset.

Occluded Character-level Total-Text (OCTT) dataset is a new dataset proposed in this work

for evaluating occluded text in scene text spotting from the raw images of the test set of the

Total-Text [72] dataset. We selected Total-Text because it has various arbitrary shapes of text

instances, including multi-oriented and curved text. OCTT contains 300 images that at least one

character is weakly occluded following the same procedure described in [264]. Some examples

of this dataset are shown in Figure 8.5(b).

8.4.3 Evaluation Metrics

For evaluating our recognition task, we use the well-known Word Recognition Accuracy (WRA)

metric, that commonly used in measuring the accuracy of STR methods [27, 67, 101]. For

evaluating of detection and end-to-end spotting models we use the same metric in [100, 272].

Similar to [250] we also use mean average precision (AP) as our evaluation metric adopted as a
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standard in many recent object detection algorithms to evaluate the 36 alphanumerical (10 digits

+ 26 capital letters) characters directly spotted in the OCTT dataset.

8.4.4 Quantitative Results

Comparison SOTA Recognition Methods on OST Dataset. We evaluate the performance of

some SOTA methods on OST [264] datasets in Table 8.1. As shown, all methods’ recognition

accuracy declines by a large margin when applied to occluded text. This decline is more evident

in RNN-based methods [27, 63–67]. For example, ASTER [27] that has the best average WRA

on all sets of word instances without occlusion, ∼ 86%, witnessed ∼ 26% and ∼ 46% WRA

decrease on OST dataset that is the same images with weak and heavy occlusion on only one

character, respectively. However, the WRA performance was better for the transformer-based

methods like 2DSPE [203] and 2LSPE [243] and recent method, VisionLAN [264], that uses of

pre-trained language model in its framework.

On the other hand, our proposed method that takes advantage of MAE in its backbone out-

performs the SOTA methods in OST by ∼ 5% on average on the OST dataset. This performance

confirms that a pre-trained masked backbone during training can improve the WRA on occluded

text.

Comparison SOTA Text Spotting Methods on OCTT Dataset. We also evaluate the perfor-

mance of some SOTA scene text detection and scene text spotting methods in Table 8.2. As

seen, occlusion does not affect detection performance but leads to a big difference in text spot-

ting methods. For example, the H-mean performance of scene text detection of ABC-Net [100]

only declines ∼ 1% when occluded applied, while seeing a large margin of decline ∼ 13% dur-

ing measuring text spotting metric for F-measure. This performance brings us to conclude that

occlusion affects more on the recognition models more than detection. However, Our proposed
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Table 8.1: Comparison of STR methods with our proposed method on the OST [264] dataset
using WRA metric. Weak and Heavy mean weak and heavy occluded of characters. For evaluat-
ing of without occlusion, we use the average WRA of the [71, 77, 79, 81–83] datasets using the
pre-trained models. “Weak” and “heavy” denote the degree of random occlusion using one and
two lines to cover the characters, respectively. The best performance is highlighted in bold.

Method Weak occlusion Heavy occlusion without occlusion
CRNN [63] 53.43% 37.33% 78.13%
RARE [64] 56.29% 38.20% 79.14%
ROSETTA [66] 55.50% 34.06% 79.70%
STAR-Net [65] 63.07% 42.05% 82.59%
CLOVA [67] 66.47% 47.55% 84.37%
ASTER [27] 60.90% 40.80% 86.10%
VisionLAN [264] 70.30% 50.30% 89.11%
2DSPE [203] 70.70% 55.80% 87.49%
2LSPE [243] 71.88% 57.04% 88.16%
Baseline [268] 69.20% 50.82% 86.20%
Ours 75.32% 62.40% 87.60%

end-to-end scene text spotting model by using the word instances of rectangular bounding boxes

outperformed the SOTA model [100] in the OCTT dataset.

We also study the performance of end-to-end text spotting at the character level using the

OCTT dataset. As shown in Table 8.3, the AP performance of recent detection models [201,

244, 245, 250] decrease ∼ 4% compare to OCTT without occlusion. However, our proposed

end-to-end text spotting model outperformed the SOTA detectors in terms of AP performance

for both cases of occluded or not occluded characters of the OCTT dataset.

8.4.5 Qualitative Results

Figure 8.7 shows the qualitative results of our recognition model in §8.3.1 on the OST [264]

dataset. As shown, the proposed model recognize correctly the occluded cropped word instances,

where most of the SOTA methods [27, 63–67] failed to recognize these occluded word instances
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Table 8.2: Detection and end-to-end spotting results on the OCTT dataset. E2E denotes end-
to-end. P, R, H denote Precision, Recall, and H-mean, respectively. The best performance is
highlighted in bold. Occluded results are marked in gray .

Model Occlusion
Detection E2E

P R H F-measure

ABC [100]
- 82.3 86.9 84.5 63.0

yes 80.8 85.6 83.1 50.8

APT [275]
- 89.1 86.4 87.8 -

yes 87.8 85.7 86.7 -

Ours
- - - - 76.3

yes - - - 68.5

Table 8.3: Results of end-to-end character spotting on OCTT dataset. AP means average preci-
sion.

Model AP (Original) AP (Occluded)
Baseline [201] 0.43 0.39
PVT [244] 0.44 0.41
Sparse R-CNN [245] 0.45 0.41
E2ESC [250] 0.46 0.42
Ours 0.51 0.49
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Table 8.4: Classification accuracy results in the occluded characters of the OCTT dataset.

Model Accuracy
ResNet 83.2
Fine-Tuned MAE 92.5

especially the heavy occluded in right column. We also provide qualitative results of our pro-

posed end-to-end scene text spotting model (§8.3.2) on the OCTT dataset in Figure 8.6. As it can

be seen, the proposed method performs well on the occluded text instances with arbitrary shapes.

8.4.6 Ablation Study

Effect of MAE on Occluded Characters. For this experiment, we use MAE that utilizes a ViT-

Base (ViT-B/16) [273] as the backbone in our ablation study. We fine-tune the MAE [7] using

cropped characters of SynthText [87] and applied it to the occluded characters. We also compare

the classification accuracy of ResNet [164] and our fine-tuned model on cropped characters of

OCTT. Table 8.4 demonstrates the results. The fine-tuned MAE outperformed the ResNet50

model with a large margin on this dataset. The qualitative results on some occluded characters

of the OCTT dataset in Figure 8.8 demonstrate how a fine-tuned MAE model can minimize the

occluders’ effect.

Classification Alphanumeric Characters. To see how masked autoencoders are capable of

restoring the masked digits and characters, we apply an MAE with the setting shown in Table

8.5. Increasing the number of encoder and decoder layers increases the classification accuracy

for both digits and cropped characters. We then use a pre-trained model of [7] and fine-tune it on

the cropped characters of [72] dataset; This improved the classification accuracy of both MNIST

[281] and the cropped characters of the OCTT dataset. Figure 8.9 illustrates the qualitative results

of fine-tuning on the MNIST [281] and cropped characters using a masked autoencoder model
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G-T:  DONVAN 
REC: DONVAN

G-T:  PUBLIC 
REC: PUBLIC

G-T:  DONVAN 
REC: DONVAN

G-T:  CHELSEA 
REC: CXELSEA

G-T:  FOOTBALL 
REC: FOOTBALL

G-T:  PARAGON 
REC: PARAGON

G-T:  SNACK 
REC: SNACK

G-T:  QUIZNOS 
REC: QUIZNOS

Figure 8.6: Experiment results of the proposed model that successfully recognized the occluded
cropped words of OST [264] dataset. “G-T” and “REC” mean ground-truth and recognition,
respectively. The images in the left and right columns are selected from weak and heavy samples
in OST, respectively. The missed characters are shown in red. The result images are reproduced
from publicly available benchmark dataset [72].
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Figure 8.7: Experiment results of the proposed model that successfully spotted the occluded text
instances of the occluded input images. The top images are the original images with occlusion,
and the bottom are our end-to-end text spotting results (Best viewed in color when zoomed). The
result character images are reproduced from publicly available benchmark dataset [72].

with six encoders and two decoder layers of Table 8.5.

8.5 Conclusion

In this work, we have utilized the recent transformers-based backbone, MAE, in our STR and

scene text spotting at character level frameworks to address the occlusion problem in the wild

Table 8.5: The effect of different number of encoder, decoder layers and masking ratios on
recognition accuracy in MNIST [281] and cropped characters of Total-Text.

Pre-train encoder decoder mask ratio MNIST CTT
- 6 2 0.75 96.0 85.49
- 6 4 0.75 97.3 87.35

Image-Net 12 6 0.75 99.9 94.52
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Original Masked Reconstructed Reconstructed +Visible

Figure 8.8: Effect of MAE backbone on some partially occluded cropped character samples.
The sample characters are from the OCTT dataset. As shown, the MAE decreased the effect of
occluded line in both images, which later makes easier recognizing the occluded characters.

Figure 8.9: Sample masked image (middle) with masking ratio is 75%, MAE reconstruction
(right), and the ground-truth (left). The images on top are from the MNIST dataset [281],
and down images are cropped scene text characters from OCTT dataset reproduced from public
dataset in [72].
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images. In addition, we have proposed an end-to-end scene text spotting at the character level

that directly reads characters in a given image and aggregates them into a word. To evaluate

our proposed method and compare its performance with SOTA techniques in partially occluded

characters in scene text recognition and end-to-end scene text spotting, we have used the OST

dataset and our new proposed OCTT datasets, respectively. The experimental results have shown

that our proposed models achieved SOTA performance on the OST and OCTT datasets that

confirm the effectiveness of the MAE backbone in addressing occluded text recognition and

spotting.

In the last chapter of this thesis (Chapter 9), we summarize and conclude the proposed tech-

niques for detecting and recognizing of irregular and occluded text challenges in the wild images.

We also discuss some interesting future directions that can be used for improving the detection

and recognition performance of the mentioned challenges.
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Chapter 9

Conclusion

Scene text detection and recognition methods that utilized deep-learning in their pipelines have

witnessed tremendous progress in recent years. These methods achieve superior performance

when the text’s shape in the image is a regular and clean background. However, several impor-

tant remaining challenges limit the performance of the current state-of-the-art methods, such as

irregular text (e.g., curved, multi-oriented, and vertical text) and the presence of occlusion.

In this thesis, we have presented a detailed review of the recent advancement in scene text

detection and recognition fields, focusing on deep learning-based techniques and architectures.

We have leveraged the transformer’s architecture for both detection and recognition for tackling

the irregular-text problem. For scene text detection, we have designed a new predictor that aims

to infer n-vertices of a polygon or the degree of a Bezier curve to better represent irregular-text

regions and a loss function that is more precise in measuring the changes in scales and aspect

ratios of the detected text regions.

For scene text recognition, we have used a 2D positional encoder with the transformer archi-

tecture, which better preserves the spatial information in 2D images than the prior methods for

irregular text recognition. Furthermore, we have proposed a new feed-forward-network layer in
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the encoder module making it more robust in capturing the features generated by the encoder’s

self-attention mechanism. We also have extended the capabilities of a recently proposed posi-

tional encoder with learnable sinusoidal frequencies from one-dimensions to a two-dimensions

format. Moreover, we have shown how to incorporate the learned positions within the multi-head

self-attention (MHSA) of the transformer’s architecture for scene text recognition.

For end-to-end scene text spotting, we have leveraged a new end-to-end transformer-based

architecture for character spotting in the wild images. The proposed method has leveraged

Deformable-Patch (DPT) as a feature extraction backbone and a bounding box loss function for

reading characters with different sizes, scales, and aspect ratios in the wild images. In addition,

we have proposed an end-to-end arbitrary shaped text spotting architecture using a multi-scale

vision transformer encoder as a backbone followed by an upgraded transformer-based detector

capable of outputting characters and words as well as their rectangular and polygon bounding

boxes representations.

To address partially occluded text in the wild images, we have used a pre-trained masked

autoencoder pipeline integrated into our current text recognition and spotting networks. We

have prepared a partially occluded text (OCTT) dataset annotated at the character level explicitly

designed for occluded text spotting.

We also have conducted experiments on different challenging benchmark datasets to com-

pare the performance of our proposed methods with state-of-the-art scene text detection and

recognition methods. Our quantitative and qualitative experimental results can be summarized

as follows:

• For scene text detection, we have presented a transformer-based architecture for multi-

oriented and curved text detection in the wild. Our best proposed model that uses a 3

splits rotated rectangular loss function achieves the best H-mean performance of 87.8%

and 87.2% for Total-Text and CTW-1500 datasets, respectively. Our system also exhibits
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SOTA performance in Recall (85.0%) and H-mean (88.1%) on the MSRA-TD500 dataset

and yield competitive results for ICDAR15 benchmarks.

• For scene text recognition, it has been shown that our proposed model outperformed the

state-of-the-art methods in terms of word recognition accuracy on several challenging

datasets. Furthermore, the effect of different PE schemes on the transformer’s architecture

has been studied. The proposed 2D sinusoidal PE technique with learnable frequencies has

outperformed the baseline method that uses fixed PE frequencies in terms of recognition

accuracy in all cases.

• For end-to-end recognition, experimental results have shown that the proposed method

outperforms the state-of-the-art methods, including recent transformer based detectors, in

terms of mean average precision.

• For the text occlusion problem, our scent text recognition and scene text spotting models

have shown the best performance in terms of average WRA and F-measure in the OST

(68.86%) and OCTT (68.5%) datasets by outperforming the best methods by a large mar-

gin of ∼ 5% and ∼ 18%, respectively.

In this thesis, we have taken a few steps towards addressing the detection and recognition

of irregular and occluded text challenges in the wild images; however, we believe there is still

much room for improvement in our proposed models. In future work, we are considering further

optimization of our algorithm’s shortcomings. The direction of possible investigation in existing

open areas of text detection, recognition, and end-to-end text spotting frameworks is as follows:

(1) Similar to other text detection and text spotting methods, our proposed frameworks are not

generalizable (i.e., training on one dataset and testing on a different dataset). The main reason

for this is that the current real-world datasets for text detection have too few images for training

(1k - 2k). One solution for addressing this problem could be designing a large set of training

datasets suitable for real-world challenges.
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(2) In contrast to our scent text recognition models that only require synthetic datasets for train-

ing, scene text detection and end-to-end text spotting models require both synthetic samples

for pre-training and real-world images for fine-tuning. However, preparing a large real-world

dataset is expensive. Researchers can use generative adversarial network [192] based methods or

3D proposal based [282] models for producing more realistic text images that can be a better way

of generating synthetic datasets for training text detectors. For example, by utilizing the recent

work in [283], we can generate real-world like text images, which can be used directly for the

training of our models.

The other way could be utilizing unsupervised or weakly-supervised techniques in existing

current architectures to alleviate the need for annotation of a real-world dataset. For example, in a

weakly-supervised setting, we can benefit from the existing partial transcript annotation provided

for the image during training as in [272] without complete expensive annotations. Furthermore,

in a weakly-supervised manner, we can train our model with a more straightforward detection

representation like a rectangular bounding box instead of polygon or segmentation masks anno-

tation as proposed in [284].

(3) One of the shortcomings in our irregular text detection and end-to-end spotting models is

efficiency. Our models require multiple powerful GPUs to train and at least one GPU to obtain a

high FPS during inference. Furthermore, with the availability of handheld devices, it is difficult

to use these models in real-world applications via smartphones; for example, blind navigation,

assisting tourists or drivers on streets, label reading of products for costumers in supermarkets,

and reading the hand-writing of a doctor or classroom teacher. It is worth while for researchers to

utilize model compression techniques or design lightweight models that can be used on handheld

devices.

Concerning the occlusion challenge, our work in this thesis only evaluated partially occluded

text instances prepared with human interaction on one/two characters. However, text affected
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by heavy occlusion on more characters in real-world scenarios may significantly undermine the

performance of our model. In addition, to the best of our knowledge, there is not a publicly

available benchmark dataset for the occluded text detection/recognition in the wild; we discuss

some possible solutions as follows:

(i) Since occlusion mainly happens on characters, designing a sizeable real-world occluded

dataset annotated at the character-level with additional occlusion information will help future

researchers to design more robust algorithms for addressing the occlusion problem. In addition,

as we mentioned in §8.1, one way to tackle the occlusion problem is leveraging the composi-

tionality idea [255] in our current deep-learning models may help solve the occlusion problem.

However, compositionality requires a specific type of dataset with human interaction that are not

available in the text detection/recognition field for researchers.

(ii) As humans, we usually use prior-knowledge to guess the missed parts of text instances.

Current NLP models have superior performance in predicting missed words/text in a sentence.

Therefore, designing a text recognition scheme based on a solid semantic NLP model can help

better predict occluded characters. For example, we can feed the extracted visual features of

an input image into a pre-trained language model in an iterative feedback setting to refine more

contextual features and improve the final output’s confidence on character prediction [263, 285–

287].
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Appendix A

Loss Functions And Detailed Architectures

A.1 Losses

A.1.1 Smooth-L1 Loss Function

This loss is leveraged for the tasks with bounding box regression. The smooth egression loss

(Lreg)is defined as:

Lreg =
∑
i∈S

smoothL1(pi, p
∗) (A.1)

in which,

SmoothL1(x) =

 0.5(σx)2 if |x| < 1/σ2

|x| − 0.5/σ2 otherwise
(A.2)

where x represents the error between the predicted bounding boxes (p) and the ground-truth (p∗)

The Smooth-ln loss is also an another continuous function of the above piece-wise equation et
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al. [184], defined as follow:

smoothln(x) = (|x|+ 1) ln(|x|+ 1)− |x| (A.3)

A.2 Detailed Architecture

A.2.1 Transformer for text detection

Figure A.1 shows architecture of object detection using transformer.

A.3 Self-attention

Let xi ∈ Rn denotes an n-dimensional vector. So for a set of t input x’s, we have [288]:

{xi}ti=1 = {x1, x2, ..., xt}, X = [x1, x2, ..., xt] ∈ Rn×t (A.4)

where X ∈ Rn×t represents the set as a matrix form. With self-attention, the hidden representa-

tion h is a linear combination of the inputs:

h = α1x1 + α2x2+, ..., αtxt ∈ Rn (A.5)

Using the matrix representation described above, we can write the hidden layer as the matrix

product:

h = Xa (A.6)

where a ∈ Rn is a column vector with components αi. With hard-attention, we impose the

following constraint on the alphas: ||a||0 = 1. This means α is a one-hot vector. Therefore, all
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Figure A.1: Architecture of object detection using transformer. The above architecture is repro-
duced from [96].

but one of the coefficients in the linear combination of the inputs equals zero, and the hidden

representation reduces to the input xi corresponding to the element αi = 1. With soft-attention,

we impose that ||a||1 = 1. The hidden representations is a linear combination of the inputs where

the coefficients sum up to 1. In Eq. A.6, a is defined as follows:

a = Softmaxβ(XTx) ∈ Rt, β =
1√
d

(A.7)
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since large similarities cause Softmax to saturate and give vanishing gradients, so for a d-

dimension vector, β is used to control the temperature constant of it. For set of x, we have set of

a which we can call it matrix A ∈ Rt×t. Similarly, by having a set of a we have a set of h as H

from Eq. A.6. Generally, the matrix format of Eq. A.6 can be defined as follows:

H = XA ∈ Rn×t (A.8)

A.3.1 Queries, Keys and Values

The input set x is projected by three matrices, q, k, and v, which are referred to as the queries,

keys and values, respectively as [288]:

q = Wqx ∈ Rd′ , k = Wkx ∈ Rd′ , v = Wvx ∈ Rd′′ (A.9)

In order to compare the query against all possible keys, q and k must have the same dimen-

sionality, i.e. q, k ∈ Rd′ . However, v can be of any dimension. But for simplicity we can set

d′ = d′′ , d. for set of x, we have a set of q, k, and v as follows:

{xi}ti=1  {qi}ti=1, {ki}ti=1, {vi}ti=1  Q,K, V ∈ Rd×t (A.10)

By considering the above equation, we can define a and the hidden layer (h) as follows:

a = Softmaxβ(KT q) = Softmax(
KT q√
d

) ∈ Rt h = V a ∈ Rd (A.11)
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where one query (q) is compared with all keys (K). β in the above equation is used for controlling

the temperature constant of Softmax, which for d-dimensions can be defined as follows [288]:

β =
1√
d

(A.12)

large similarities will cause Softmax to saturate and give vanishing gradients. For example,

a.b = |a||b|cos(θ) and suppose a and b are constant vectors of dimension d then |a| = (
∑

i a
2
i ) =

a
√
d. Finally, for a set of q and a the final set of hidden layer (H) can be defined as follows

[288]:

{qi}ti=1  {ai}ti=1  A ∈ Rt×t, H = V A ∈ Rd×t (A.13)

A.3.2 Multi-Head Self Attention

Multi-Head Self Attention mechanism MHA learns an alignment in which each element in the

sequence learns to gather from other elements in the sequence [193, 288–290]. By considering

h as heads we have a vector in R3hd as follows:


q

k

v

 =


Wq

Wk

Wv

x ∈ R3d (A.14)

And for h-head we can extend the above equation as follows:
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q1

q2

...

qh

 =


W 1
q

W 2
q

...

W h
q

x,

k1

k2

...

kh

 =


W 1
k

W 2
k

...

W h
k

x,

v1

v2

...

vh

 =


W 1
v

W 2
v

...

W h
v

x,  


qh

kh

vh

 =


W h
q

W h
k

W h
v

x ∈ Rd×hd

so by using Wh ∈ Rd×hd to get back to Rd.

A.4 One-Dimensional (1D) Positional Encoding

The positional encoding (PE) is first utilized in natural language processing in [1]. To explain, let

X ∈ Rn×t be an example of the embedding input, where n and t denote the sequence length and

embedding size, respectively. The PE block in Figure 3.1 encodes the position of X and outputs

PE +X , and it can be defined as follows:

PE(p, 2i) = sin
( p

100002i/t

)
,

PE(p, 2i+ 1) = cos
( p

100002i/t

)
. (A.15)

where p in the above equation show input sequence’s order, in which (p = 0, . . . , n − 1). The

i illustrates the position along the embedding vector dimension and it varies as follows: (i =

0, . . . , b(t− 1)/2c).
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