7 research outputs found

    FINAL FRONTIER GAME: A CASE STUDY ON LEARNER EXPERIENCE

    Get PDF
    International audienceTeachers are facing many difficulties when trying to improve the motivation, engagement, and learning outcomes of students in Science, Technology, Engineering, and Mathematics (STEM) subjects. Game-based learning helps the students learn in an immersive and engaging environment, attracting them more towards STEM education. This paper introduces a new interactive educational 3D video game called Final Frontier, designed for primary school children. The proposed game design methodology is described and an analysis of a research study conducted in Ireland that investigated learner experience through a survey is presented. Results show that: (1) 92.5% of students have confirmed that the video game helped them to understand better the characteristics of the planets from the Solar system, and (2) 92.6% of students enjoyed the game and appreciated different game features, including the combination between fun and learning aspects which exists in the game

    User-centered EEG-based multimedia quality assessment

    Full text link
    Multimedia users are becoming increasingly quality-aware as the technological advances make ubiquitous the creation and delivery of high-definition multimedia content. While much research work has been conducted on multimedia quality assessment, most of the existing solutions come with their own limitations, with particular solutions being more suitable to assess particular aspects related to user's Quality of Experience (QoE). In this context, there is an increasing need for innovative solutions to assess user's QoE with multimedia services. This paper proposes the QoE-EEG-Analyser that provides a solution to automatically assess and quantify the impact of various factors contributing to user's QoE with multimedia services. The proposed approach makes use of participant's frustration level measured with a consumer-grade EEG system, the Emotiv EPOC. The main advantage of QoE-EEG-Analyser is that it enables continuous assessment of various QoE factors over the entire testing duration, in a non-invasive way, without requiring the user to provide input about his perceived visual quality. Preliminary subjective results have shown that frustration can indicate user's perceived QoE

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Adaptive multimedia streaming control algorithm in wireless LANs and 4G networks

    Get PDF
    E-learning has become an important service offered over the Internet. Lately many users are accessing learning content via wireless networks and using mobile devices. Most content is rich media-based and often puts significant pressure on the existing wireless networks in order to support high quality of delivery. In this context, offering a solution for improving user quality of experience when multimedia content is delivered over wireless networks is already a challenging task. Additionally, to support this for mobile e-learning over wireless LANs becomes even more difficult. If we want to increase the end-used perceived quality, we have to take into account the users’ individual set of characteristics. The fact that users have subjective opinions on the quality of a multimedia application can be used to increase their QoE by setting a minimum quality threshold below which the connection is considered to be undesired. Like this, the use of precious radio resources can be optimized in order to simultaneously satisfy an increased number of users. In this thesis a new user-oriented adaptive algorithm based on QOAS was designed and developed in order to address the user satisfaction problem. Simulations have been carried out with different adaptation schemes to compare the performances and benefits of the DQOAS mechanism. The simulation results are showing that using a dynamic stream granularity with a minimum threshold for the transmission rate, improves the overall quality of the multimedia delivery process, increasing the total number of satisfied users and the link utilization The good results obtained by the algorithm in IEEE 802.11 wireless environment, motivated the research about the utility of the newly proposed algorithm in another wireless environment, LTE. The study shows that DQOAS algorithm can obtain good results in terms of application perceived quality, when the considered application generates multiple streams. These results can be improved by using a new QoS parameters mapping scheme able to modify the streams’ priority and thus allowing the algorithms decisions to not be overridden by the systems’ scheduler

    End-User Quality of Experience Oriented Adaptive E-learning System

    No full text
    In the context of new devices and with a variety of network technologies that allow access to the Internet, the providers of e-learning materials have to ensure that the users have a positive experience using their e-learning systems and they are happy to re-use them. Adaptive Hypermedia research aims to provide personalised educational material that ensures a positive learning experience for the end-users. However, user experience is dependent not only on the content served to them, but also on the user perceived performance of the e-learning system. This leads to a new dimension of individual differences between Web users: the end-user Quality of Experience (QoE). We have proposed a solution for Adaptive Hypermedia Systems (AHS) that provides satisfactory end-user QoE through the use of a new QoE layer. This layer attempts to take into account multiple factors affecting QoE in relation to the delivery of a wide range of Web components such as text, images, video, audio. The effectiveness of our QoE layer has been tested in comparison to a standard educational AHS and the results of these tests are presented in this paper. Different educational-based evaluation techniques such as learner achievement analysis, learning performance assessment, usability survey and correlation analysis between individual student performance and judgment on system usability were applied in order to fully assess the performance of the proposed QoE layer. Results of the tests showed that the use of the QoE layer brought significant improvements in terms of user learning performance, system usability and user satisfaction with the personalised e-learning system while not affecting the user learning achievement

    End-User Quality of Experience Oriented Adaptive E-learning System

    No full text
    In the context of new devices and with a variety of network technologies that allow access to the Internet, the providers of e-learning materials have to ensure that the users have a positive experience using their e-learning systems and they are happy to re-use them. Adaptive Hypermedia research aims to provide personalised educational material that ensures a positive learning experience for the end-users. However, user experience is dependent not only on the content served to them, but also on the user perceived performance of the e-learning system. This leads to a new dimension of individual differences between Web users: the end-user Quality of Experience (QoE). We have proposed a solution for Adaptive Hypermedia Systems (AHS) that provides satisfactory end-user QoE through the use of a new QoE layer. This layer attempts to take into account multiple factors affecting QoE in relation to the delivery of a wide range of Web components such as text, images, video, audio. The effectiveness of our QoE layer has been tested in comparison to a standard educational AHS and the results of these tests are presented in this paper. Different educational-based evaluation techniques such as learner achievement analysis, learning performance assessment, usability survey and correlation analysis between individual student performance and judgment on system usability were applied in order to fully assess the performance of the proposed QoE layer. Results of the tests showed that the use of the QoE layer brought significant improvments in terms of user learning performance, system usability and user satisfaction with the personalised e-learning system while not affecting the user learning achievement

    End-User Quality of Experience Oriented Adaptive E-learning System

    No full text
    In the context of new devices and with a variety of network technologies that allow access to the Internet, the providers of e-learning materials have to ensure that the users have a positive experience using their e-learning systems and they are happy to re-use them. Adaptive Hypermedia research aims to provide personalised educational material that ensures a positive learning experience for the end-users. However, user experience is dependent not only on the content served to them, but also on the user perceived performance of the e-learning system. This leads to a new dimension of individual differences between Web users: the end-user Quality of Experience (QoE). We have proposed a solution for Adaptive Hypermedia Systems (AHS) that provides satisfactory end-user QoE through the use of a new QoE layer. This layer attempts to take into account multiple factors affecting QoE in relation to the delivery of a wide range of Web components such as text, images, video, audio. The effectiveness of our QoE layer has been tested in comparison to a standard educational AHS and the results of these tests are presented in this paper. Different educational-based evaluation techniques such as learner achievement analysis, learning performance assessment, usability survey and correlation analysis between individual student performance and judgment on system usability were applied in order to fully assess the performance of the proposed QoE layer. Results of the tests showed that the use of the QoE layer brought significant improvements in terms of user learning performance, system usability and user satisfaction with the personalised e-learning system while not affecting the user learning achievement
    corecore