5 research outputs found

    SuperTriplets: a triplet-based supertree approach to phylogenomics

    Get PDF
    Motivation: Phylogenetic tree-building methods use molecular data to represent the evolutionary history of genes and taxa. A recurrent problem is to reconcile the various phylogenies built from different genomic sequences into a single one. This task is generally conducted by a two-step approach whereby a binary representation of the initial trees is first inferred and then a maximum parsimony (MP) analysis is performed on it. This binary representation uses a decomposition of all source trees that is usually based on clades, but that can also be based on triplets or quartets. The relative performances of these representations have been discussed but are difficult to assess since both are limited to relatively small datasets

    Scaling limits of Markov branching trees with applications to Galton-Watson and random unordered trees

    Full text link
    We consider a family of random trees satisfying a Markov branching property. Roughly, this property says that the subtrees above some given height are independent with a law that depends only on their total size, the latter being either the number of leaves or vertices. Such families are parameterized by sequences of distributions on partitions of the integers that determine how the size of a tree is distributed in its different subtrees. Under some natural assumption on these distributions, stipulating that "macroscopic" splitting events are rare, we show that Markov branching trees admit the so-called self-similar fragmentation trees as scaling limits in the Gromov-Hausdorff-Prokhorov topology. The main application of these results is that the scaling limit of random uniform unordered trees is the Brownian continuum random tree. This extends a result by Marckert-Miermont and fully proves a conjecture by Aldous. We also recover, and occasionally extend, results on scaling limits of consistent Markov branching models and known convergence results of Galton-Watson trees toward the Brownian and stable continuum random trees.Comment: Published in at http://dx.doi.org/10.1214/11-AOP686 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Cophylogenetic analysis of dated trees

    Get PDF
    Parasites and the associations they form with their hosts is an important area of research due to the associated health risks which parasites pose to the human population. The associations parasites form with their hosts are responsible for a number of the worst emerging diseases impacting global health today, including Ebola, HIV, and malaria. Macro-scale coevolutionary research aims to analyse these associations to provide further insights into these deadly diseases. This approach, first considered by Fahrenholz in 1913, has been applied to hundreds of coevolutionary systems and remains the most robust means to infer the underlying relationships which form between coevolving species. While reconciling the coevolutionary relationships between a pair of evolutionary systems is NP-Hard, it has been shown that if dating information exists there is a polynomial solution. These solutions however are computationally expensive, and are quickly becoming infeasible due to the rapid growth of phylogenetic data. If the rate of growth continues in line with the last three decades, the current means for analysing dated systems will become computationally infeasible. Within this thesis a collection of algorithms are introduced which aim to address this problem. This includes the introduction of the most efficient solution for analysing dated coevolutionary systems optimally, along with two linear time heuristics which may be applied where traditional algorithms are no longer feasible, while still offering a high degree of accuracy 91%. Finally, this work integrates these incremental results into a single model which is able to handle widespread parasitism, the case where parasites infect multiple hosts. This proposed model reconciles two competing theories of widespread parasitism, while also providing an accuracy improvement of 21%, one of the largest single improvements provided in this field to date. As such, the set of algorithms introduced within this thesis offers another step toward a unified coevolutionary analysis framework, consistent with Fahrenholz original coevolutionary analysis model

    Handbook of Stemmatology

    Get PDF
    Stemmatology studies aspects of textual criticism that use genealogical methods. This handbook is the first to cover the entire field, encompassing both theoretical and practical aspects, ranging from traditional to digital methods. Authors from all the disciplines involved examine topics such as the material aspects of text traditions, methods of traditional textual criticism and their genesis, and modern digital approaches used in the field
    corecore