1,009 research outputs found

    Overfitting in Synthesis: Theory and Practice (Extended Version)

    Full text link
    In syntax-guided synthesis (SyGuS), a synthesizer's goal is to automatically generate a program belonging to a grammar of possible implementations that meets a logical specification. We investigate a common limitation across state-of-the-art SyGuS tools that perform counterexample-guided inductive synthesis (CEGIS). We empirically observe that as the expressiveness of the provided grammar increases, the performance of these tools degrades significantly. We claim that this degradation is not only due to a larger search space, but also due to overfitting. We formally define this phenomenon and prove no-free-lunch theorems for SyGuS, which reveal a fundamental tradeoff between synthesizer performance and grammar expressiveness. A standard approach to mitigate overfitting in machine learning is to run multiple learners with varying expressiveness in parallel. We demonstrate that this insight can immediately benefit existing SyGuS tools. We also propose a novel single-threaded technique called hybrid enumeration that interleaves different grammars and outperforms the winner of the 2018 SyGuS competition (Inv track), solving more problems and achieving a 5×5\times mean speedup.Comment: 24 pages (5 pages of appendices), 7 figures, includes proofs of theorem

    Real Hypercomputation and Continuity

    Full text link
    By the sometimes so-called 'Main Theorem' of Recursive Analysis, every computable real function is necessarily continuous. We wonder whether and which kinds of HYPERcomputation allow for the effective evaluation of also discontinuous f:R->R. More precisely the present work considers the following three super-Turing notions of real function computability: * relativized computation; specifically given oracle access to the Halting Problem 0' or its jump 0''; * encoding real input x and/or output y=f(x) in weaker ways also related to the Arithmetic Hierarchy; * non-deterministic computation. It turns out that any f:R->R computable in the first or second sense is still necessarily continuous whereas the third type of hypercomputation does provide the required power to evaluate for instance the discontinuous sign function.Comment: previous version (extended abstract) has appeared in pp.562-571 of "Proc. 1st Conference on Computability in Europe" (CiE'05), Springer LNCS vol.352
    • …
    corecore