5 research outputs found

    Haptic technology for micro-robotic cell injection training systems — a review

    Full text link
    Currently, the micro-robotic cell injection procedure is performed manually by expert human bio-operators. In order to be proficient at the task, lengthy and expensive dedicated training is required. As such, effective specialized training systems for this procedure can prove highly beneficial. This paper presents a comprehensive review of haptic technology relevant to cell injection training and discusses the feasibility of developing such training systems, providing researchers with an inclusive resource enabling the application of the presented approaches, or extension and advancement of the work. A brief explanation of cell injection and the challenges associated with the procedure are first presented. Important skills, such as accuracy, trajectory, speed and applied force, which need to be mastered by the bio-operator in order to achieve successful injection, are then discussed. Then an overview of various types of haptic feedback, devices and approaches is presented. This is followed by discussion on the approaches to cell modeling. Discussion of the application of haptics to skills training across various fields and haptically-enabled virtual training systems evaluation are then presented. Finally, given the findings of the review, this paper concludes that a haptically-enabled virtual cell injection training system is feasible and recommendations are made to developers of such systems

    Enhancing the E-Commerce Experience through Haptic Feedback Interaction

    Get PDF
    The sense of touch is important in our everyday lives and its absence makes it difficult to explore and manipulate everyday objects. Existing online shopping practice lacks the opportunity for physical evaluation, that people often use and value when making product choices. However, with recent advances in haptic research and technology, it is possible to simulate various physical properties such as heaviness, softness, deformation, and temperature. The research described here investigates the use of haptic feedback interaction to enhance e-commerce product evaluation, particularly haptic weight and texture evaluation. While other properties are equally important, besides being fundamental to the shopping experience of many online products, weight and texture can be simulated using cost-effective devices. Two initial psychophysical experiments were conducted using free motion haptic exploration in order to more closely resemble conventional shopping. One experiment was to measure weight force thresholds and another to measure texture force thresholds. The measurements can provide better understanding of haptic device limitation for online shopping in terms of the availability of different stimuli to represent physical products. The outcomes of the initial psychophysical experimental studies were then used to produce various absolute stimuli that were used in a comparative experimental study to evaluate user experience of haptic product evaluation. Although free haptic exploration was exercised on both psychophysical experiments, results were relatively consistent with previous work on haptic discrimination. The threshold for weight force discrimination represented as downward forces was 10 percent. The threshold for texture force discrimination represented as friction forces was 14.1 percent, when using dynamic coefficient of friction at any level of static coefficient of friction. On the other hand, the comparative experimental study to evaluate user experience of haptic product information indicated that haptic product evaluation does not change user performance significantly. However, although there was an increase in the time taken to complete the task, the number of button click actions tended to decrease. The results showed that haptic product evaluation could significantly increase the confidence of shopping decision. Nevertheless, the availability of haptic product evaluation does not necessarily impose different product choices but it complements other selection criteria such as price and appearance. The research findings from this work are a first step towards exploring haptic-based environments in e-commerce environments. The findings not only lay the foundation for designing online haptic shopping but also provide empirical support to research in this direction

    Enabling multi-point haptic grasping in virtual environments

    Full text link
    Haptic interaction has received increasing research interest in recent years. Currently, most commercially available haptic devices provide the user with a single point of interaction. Multi-point haptic devices present a logical progression in device design and enable the operator to experience a far wider range of haptic interactions, particularly the ability to grasp via multiple fingers. This is highly desirable for various haptically enabled applications including virtual training, telesurgery and telemanipulation. This paper presents a gripper attachment which utilises two low-cost commercially available haptic devices to facilitate multi-point haptic grasping. It provides the ability to render forces to the user\u27s fingers independently and using Phantom Omni haptic devices offers several benefits over more complex approaches such as low-cost, reliability, and ease of programming. The workspace of the gripper attachment is considered and in order to haptically render the desired forces to the user\u27s fingers, kinematic analysis is discussed and necessary formulations presented. The integrated multi-point haptic platform is presented and exploration of a virtual environment using CHAI 3D is demonstrated.<br /

    Virtual reality training for micro-robotic cell injection

    Full text link
    This research was carried out to fill the gap within existing knowledge on the approaches to supplement the training for micro-robotic cell injection procedure by utilising virtual reality and haptic technologies

    Multi-Finger Haptic Devices Integrating Miniature Short-Stroke Actuators

    Get PDF
    The omnipresence of electronic devices in our everyday life goes together with a trend that makes us always more immersed during their utilization. By immersion, we mean that during the development of a new product, it is more and more required to stimulate several senses of the user so as to make the product more attractive. The sense of touch does not escape the rule and is more and more considered. Definitely democratized by its integration in smart phones with touchscreens, the haptic feedback allows enhancing the human-machine interactions in many ways. For instance by improving the comfort of use of a button through the modification of its force feedback. It can also offer an interactive experience during the manipulation of digital information and even improve the communication, particularly through the internet and for blind people, with the introduction of non-verbal signals. For these reasons, the present thesis focuses on the conception of multi-finger haptic devices, a new kind of peripherals integrating multiple actuators and capable of providing a fully programmable force feedback to the user's fingers. A global methodology is presented, outlining the different constituents necessary for their conception: actuator, sensor, control, communication and software user interface. Then, generic tools corresponding to the two first elements are presented. An accurate modeling of miniature electromagnetic short-stroke actuators is made possible thanks to the combination of 3D finite element modeling (FEM) and design of experiments (DOE). The non-usual behavior of magnetic flux lines in miniature actuators with relatively large airgaps imposes to avoid simplified analytical models and to use the reliable results of finite elements. The long computation times required by 3D FEM are balanced by the use of selective DOE making the modeling methodology easily adaptable, rapid and accurate. The parametrical model of the force provided by the modeling methodology is then integrated in a full parametrical setup allowing for the optimization of the actuator force using a conventional algorithm. The advantage of the parametrical optimization is that complementary non-linear constraints such as weight and temperature can be added, making the model multi-physic. Then, several original position measurement techniques using existing sensors are developed including a low-cost custom single-photointerrupter sensor allowing for direction discrimination for fast-prototyping and a hybrid sensing method using tiny Hall sensors and taking advantage of the leaks of the main actuator magnet. Two innovative self-sensing methods are then presented, allowing for the measurement of the mover position of linear short-stroke actuators. The first solution estimates the position of the coil by measuring the acceleration through the back emf. However in this case, a constant acceleration is required, which strongly restrains the application scope. The second solution allows for a real-time measurement of the position thanks to a passive oscillating RLC circuit influenced by the variation of the coil impedance. All the solutions presented are low-cost, compact and require few computation resources. Finally, in order to illustrate the methodology proposed along the thesis, several prototypes are fabricated, giving an overview of the possibilities offered by multi-finger haptic devices. A haptic numeric pad is notably used in an experiment made in collaboration with the University Service of Child and Adolescent Psychiatry in Lausanne with the aim of improving the impaired emotional processing of psychotic adolescents. Moreover, the successful identification of several touch sensations on the same haptic pad lays the first stones of a new tactile language
    corecore