77,392 research outputs found

    Advanced Strategies for Precise and Transparent Debugging of Performance Issues in In-Memory Data Store-Based Microservices

    Full text link
    The rise of microservice architectures has revolutionized application design, fostering adaptability and resilience. These architectures facilitate scaling and encourage collaborative efforts among specialized teams, streamlining deployment and maintenance. Critical to this ecosystem is the demand for low latency, prompting the adoption of cloud-based structures and in-memory data storage. This shift optimizes data access times, supplanting direct disk access and driving the adoption of non-relational databases. Despite their benefits, microservice architectures present challenges in system performance and debugging, particularly as complexity grows. Performance issues can readily cascade through components, jeopardizing user satisfaction and service quality. Existing monitoring approaches often require code instrumentation, demanding extensive developer involvement. Recent strategies like proxies and service meshes aim to enhance tracing transparency, but introduce added configuration complexities. Our innovative solution introduces a new framework that transparently integrates heterogeneous microservices, enabling the creation of tailored tools for fine-grained performance debugging, especially for in-memory data store-based microservices. This approach leverages transparent user-level tracing, employing a two-level abstraction analysis model to pinpoint key performance influencers. It harnesses system tracing and advanced analysis to provide visualization tools for identifying intricate performance issues. In a performance-centric landscape, this approach offers a promising solution to ensure peak efficiency and reliability for in-memory data store-based cloud applications

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi
    • …
    corecore