11,414 research outputs found

    INTEROPERABILITY FOR MODELING AND SIMULATION IN MARITIME EXTENDED FRAMEWORK

    Get PDF
    This thesis reports on the most relevant researches performed during the years of the Ph.D. at the Genova University and within the Simulation Team. The researches have been performed according to M&S well known recognized standards. The studies performed on interoperable simulation cover all the environments of the Extended Maritime Framework, namely Sea Surface, Underwater, Air, Coast & Land, Space and Cyber Space. The applications cover both the civil and defence domain. The aim is to demonstrate the potential of M&S applications for the Extended Maritime Framework, applied to innovative unmanned vehicles as well as to traditional assets, human personnel included. A variety of techniques and methodology have been fruitfully applied in the researches, ranging from interoperable simulation, discrete event simulation, stochastic simulation, artificial intelligence, decision support system and even human behaviour modelling

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    Urban Drone Navigation: Autoencoder Learning Fusion for Aerodynamics

    Full text link
    Drones are vital for urban emergency search and rescue (SAR) due to the challenges of navigating dynamic environments with obstacles like buildings and wind. This paper presents a method that combines multi-objective reinforcement learning (MORL) with a convolutional autoencoder to improve drone navigation in urban SAR. The approach uses MORL to achieve multiple goals and the autoencoder for cost-effective wind simulations. By utilizing imagery data of urban layouts, the drone can autonomously make navigation decisions, optimize paths, and counteract wind effects without traditional sensors. Tested on a New York City model, this method enhances drone SAR operations in complex urban settings.Comment: 47 page

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Learning-based perception and control with adaptive stress testing for safe autonomous air mobility

    Get PDF
    The use of electrical vertical takeoff and landing (eVTOL) aircraft to provide efficient, high-speed, on-demand air transportation within a metropolitan area is a topic of increasing interest, which is expected to bring fundamental changes to the city infrastructures and daily commutes. NASA, Uber, and Airbus have been exploring this exciting concept of Urban Air Mobility (UAM), which has the potential to provide meaningful door-to-door trip time savings compared with automobiles. However, successfully bringing such vehicles and airspace operations to fruition will require introducing orders-of-magnitude more aircraft to a given airspace volume, and the ability to manage many of these eVTOL aircraft safely in a congested urban area presents a challenge unprecedented in air traffic management. Although there are existing solutions for communication technology, onboard computing capability, and sensor technology, the computation guidance algorithm to enable safe, efficient, and scalable flight operations for dense self-organizing air traffic still remains an open question. In order to enable safe and efficient autonomous on-demand free flight operations in this UAM concept, a suite of tools in learning-based perception and control systems with stress testing for safe autonomous air mobility is proposed in this dissertation. First, a key component for the safe autonomous operation of unmanned aircraft is an effective onboard perception system, which will support sense-and-avoid functions. For example, in a package delivery mission, or an emergency landing event, pedestrian detection could help unmanned aircraft with safe landing zone identification. In this dissertation, we developed a deep-learning-based onboard computer vision algorithm on unmanned aircraft for pedestrian detection and tracking. In contrast with existing research with ground-level pedestrian detection, the developed algorithm achieves highly accurate multiple pedestrian detection from a bird-eye view, when both the pedestrians and the aircraft platform are moving. Second, for the aircraft guidance, a message-based decentralized computational guidance algorithm with separation assurance capability for single aircraft case and multiple cooperative aircraft case is designed and analyzed in this dissertation. The algorithm proposed in this work is to formulate this problem as a Markov Decision Process (MDP) and solve it using an online algorithm Monte Carlo Tree Search (MCTS). For the multiple cooperative aircraft case, a novel coordination strategy is introduced by using the logit level-kk model in behavioral game theory. To achieve higher scalability, we introduce the airspace sector concept into the UAM environment by dividing the airspace into sectors, so that each aircraft only needs to coordinate with aircraft in the same sector. At each decision step, all of the aircraft will run the proposed computational guidance algorithm onboard, which can guide all the aircraft to their respective destinations while avoiding potential conflicts among them. In addition, to make the proposed algorithm more practical, we also consider the communication constraints and communication loss among the aircraft by modifying our computational guidance algorithms given certain communication constraints (time, bandwidth, and communication loss) and designing air-to-air and air-to-ground communication frameworks to facilitate the computational guidance algorithm. To demonstrate the performance of the proposed computational guidance algorithm, a free-flight airspace simulator that incorporates environment uncertainty is built in an OpenAI Gym environment. Numerical experiment results over several case studies including the roundabout test problem show that the proposed computational guidance algorithm has promising performance even with the high-density air traffic case. Third, to ensure the developed autonomous systems meet the high safety standards of aviation, we propose a novel, simulation driven approach for validation that can automatically discover the failure modes of a decision-making system, and optimize the parameters that configure the system to improve its safety performance. Using simulation, we demonstrate that the proposed validation algorithm is able to discover failure modes in the system that would be challenging for humans to find and fix, and we show how the algorithm can learn from these failure modes to improve the performance of the decision-making system under test

    A Multi-Vehicle Cooperative Localization Approach for an Autonomy Framework

    Get PDF
    Offensive techniques produced by technological advancement present opportunities for adversaries to threaten the operational advantages of our joint and allied forces. Combating these new methodologies requires continuous and rapid development towards our own set of \game-changing technologies. Through focused development of unmanned systems and autonomy, the Air Force can strive to maintain its technological superiority. Furthermore, creating a robust framework capable of testing and evaluating the principles that define autonomy allows for the exploration of future capabilities. This research presents development towards a hybrid reactive/deliberative architecture that will allow for the testing of the principles of task, cognitive, and peer flexibility. Specifically, this work explores peer flexibility in multi-robot systems to solve a localization problem using the Hybrid Architecture for Multiple Robots (HAMR) as a basis for the framework. To achieve this task a combination of vehicle perception and navigation tools formulate inferences on an operating environment. These inferences are then used for the construction of Factor Graphs upon which the core algorithm for localization implements iSAM2, a high performing incremental matrix factorization method. A key component for individual vehicle control within the framework is the Unified Behavior Framework (UBF), a behavior-based control architecture which uses modular arbitration techniques to generate actions that enable actuator control. Additionally, compartmentalization of a World Model is explored through the use of containers to minimize communication overhead and streamline state information. The design for this platform takes on a polymorphic approach for modularity and robustness enabling future development

    Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

    Full text link
    The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasise the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before full automation of UAVs and potential cooperation between UAVs and humans come to fruition.Comment: 36 pages, 304 references, 19 Figure
    • …
    corecore