15 research outputs found

    Vertical Optimizations of Convolutional Neural Networks for Embedded Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Enabling monocular depth perception at the very edge

    Get PDF
    Depth estimation is crucial in several computer vision applications, and a recent trend aims at inferring such a cue from a single camera through computationally demanding CNNs - precluding their practical deployment in several application contexts characterized by low-power constraints. Purposely, we develop a tiny network tailored to microcontrollers, processing low-resolution images to obtain a coarse depth map of the observed scene. Our solution enables depth perception with minimal power requirements (a few hundreds of mW), accurately enough to pave the way to several high-level applications at-the-edge

    Real-time single image depth perception in the wild with handheld devices

    Full text link
    Depth perception is paramount to tackle real-world problems, ranging from autonomous driving to consumer applications. For the latter, depth estimation from a single image represents the most versatile solution, since a standard camera is available on almost any handheld device. Nonetheless, two main issues limit its practical deployment: i) the low reliability when deployed in-the-wild and ii) the demanding resource requirements to achieve real-time performance, often not compatible with such devices. Therefore, in this paper, we deeply investigate these issues showing how they are both addressable adopting appropriate network design and training strategies -- also outlining how to map the resulting networks on handheld devices to achieve real-time performance. Our thorough evaluation highlights the ability of such fast networks to generalize well to new environments, a crucial feature required to tackle the extremely varied contexts faced in real applications. Indeed, to further support this evidence, we report experimental results concerning real-time depth-aware augmented reality and image blurring with smartphones in-the-wild.Comment: 11 pages, 9 figure

    On the Synergies between Machine Learning and Binocular Stereo for Depth Estimation from Images: a Survey

    Full text link
    Stereo matching is one of the longest-standing problems in computer vision with close to 40 years of studies and research. Throughout the years the paradigm has shifted from local, pixel-level decision to various forms of discrete and continuous optimization to data-driven, learning-based methods. Recently, the rise of machine learning and the rapid proliferation of deep learning enhanced stereo matching with new exciting trends and applications unthinkable until a few years ago. Interestingly, the relationship between these two worlds is two-way. While machine, and especially deep, learning advanced the state-of-the-art in stereo matching, stereo itself enabled new ground-breaking methodologies such as self-supervised monocular depth estimation based on deep networks. In this paper, we review recent research in the field of learning-based depth estimation from single and binocular images highlighting the synergies, the successes achieved so far and the open challenges the community is going to face in the immediate future.Comment: Accepted to TPAMI. Paper version of our CVPR 2019 tutorial: "Learning-based depth estimation from stereo and monocular images: successes, limitations and future challenges" (https://sites.google.com/view/cvpr-2019-depth-from-image/home
    corecore