2 research outputs found

    Empowering a Cyber-Physical System for a Modular Conveyor System with Self-organization

    Get PDF
    The Industry 4.0 advent, advocating the digitalization and transformation of current production systems towards the factories of future, is introducing significant social and technological challenges. Cyber-physical systems (CPS) can be used to realize these Industry 4.0 compliant systems, integrating several emergent technologies, such as Internet of Things, big data, cloud computing and multi-agent systems. The paper analyses the advantages of using biological inspiration to empower CPS, and particularly those developed using distributed and intelligent paradigms such as multi-agent systems technology. For this purpose, the self-organization capability, as one of the main drivers in this industrial revolution is analysed, and the way to translate it to solve complex industrial engineering problems is discussed. Its applicability is illustrated by building a self-organized cyber-physical conveyor system composed by different individual modular and intelligent transfer modules.info:eu-repo/semantics/publishedVersio

    Simulation and Control of a Cyber-Physical System under IEC 61499 Standard

    Get PDF
    IEC 61499 standard provides an architecture for control systems using function blocks (FB), languages, and semantics. These devices can be interconnected and communicate with each other. Each device contains several resources and algorithms with a communication FB at the end, which can be created, configured, and deleted without affecting other resources. Physical element can be represented by a FB that encapsulates the functionality (data/events, process, return data/events) in a single module that can be reused and combined. This work presents a simplified implementation of a modular control system using a low-cost device. In the prototyping of the application, we use 4diac to control, model and validate the implementation of the system on a programmable logic controller. It is proved that this approach can be used to model and simulate a cyber-physical system as a single element or in a networked combination. The control models provide a reusable FB design.We acknowledge the financial support of CIDEM, R&D unit funded by FCT – Portuguese Foundation for the Development of Science and Technology, Ministry of Science, Technology and Higher Education, under the Project UID/EMS/0615/2019, and it was supported by FCT, through INEGI and LAETA, under project UIDB/50022/2020.info:eu-repo/semantics/publishedVersio
    corecore