44 research outputs found

    A Review of Research on Privacy Protection of Internet of Vehicles Based on Blockchain

    Get PDF
    Numerous academic and industrial fields, such as healthcare, banking, and supply chain management, are rapidly adopting and relying on blockchain technology. It has also been suggested for application in the internet of vehicles (IoV) ecosystem as a way to improve service availability and reliability. Blockchain offers decentralized, distributed and tamper-proof solutions that bring innovation to data sharing and management, but do not themselves protect privacy and data confidentiality. Therefore, solutions using blockchain technology must take user privacy concerns into account. This article reviews the proposed solutions that use blockchain technology to provide different vehicle services while overcoming the privacy leakage problem which inherently exists in blockchain and vehicle services. We analyze the key features and attributes of prior schemes and identify their contributions to provide a comprehensive and critical overview. In addition, we highlight prospective future research topics and present research problems

    Achieving cybersecurity in blockchain-based systems: a survey

    Get PDF
    With The Increase In Connectivity, The Popularization Of Cloud Services, And The Rise Of The Internet Of Things (Iot), Decentralized Approaches For Trust Management Are Gaining Momentum. Since Blockchain Technologies Provide A Distributed Ledger, They Are Receiving Massive Attention From The Research Community In Different Application Fields. However, This Technology Does Not Provide With Cybersecurity By Itself. Thus, This Survey Aims To Provide With A Comprehensive Review Of Techniques And Elements That Have Been Proposed To Achieve Cybersecurity In Blockchain-Based Systems. The Analysis Is Intended To Target Area Researchers, Cybersecurity Specialists And Blockchain Developers. For This Purpose, We Analyze 272 Papers From 2013 To 2020 And 128 Industrial Applications. We Summarize The Lessons Learned And Identify Several Matters To Foster Further Research In This AreaThis work has been partially funded by MINECO, Spain grantsTIN2016-79095-C2-2-R (SMOG-DEV) and PID2019-111429RB-C21 (ODIO-COW); by CAM, Spain grants S2013/ICE-3095 (CIBERDINE),P2018/TCS-4566 (CYNAMON), co-funded by European Structural Funds (ESF and FEDER); by UC3M-CAM grant CAVTIONS-CM-UC3M; by the Excellence Program for University Researchers, Spain; and by Consejo Superior de Investigaciones Científicas (CSIC), Spain under the project LINKA20216 (“Advancing in cybersecurity technologies”, i-LINK+ program)

    ESIA: An Efficient and Stable Identity Authentication for Internet of Vehicles

    Full text link
    Decentralized, tamper-proof blockchain is regarded as a solution to a challenging authentication issue in the Internet of Vehicles (IoVs). However, the consensus time and communication overhead of blockchain increase significantly as the number of vehicles connected to the blockchain. To address this issue, vehicular fog computing has been introduced to improve efficiency. However, existing studies ignore several key factors such as the number of vehicles in the fog computing system, which can impact the consensus communication overhead. Meanwhile, there is no comprehensive study on the stability of vehicular fog composition. The vehicle movement will lead to dynamic changes in fog. If the composition of vehicular fog is unstable, the blockchain formed by this fog computing system will be unstable, which can affect the consensus efficiency. With the above considerations, we propose an efficient and stable identity authentication (ESIA) empowered by hierarchical blockchain and fog computing. By grouping vehicles efficiently, ESIA has low communication complexity and achieves high stability. Moreover, to enhance the consensus security of the hierarchical blockchain, the consensus process is from the bottom layer to the up layer (bottom-up), which we call B2UHChain. Through theoretical analysis and simulation verification, our scheme achieves the design goals of high efficiency and stability while significantly improving the IoV scalability to the power of 1.5 (^1.5) under similar security to a single-layer blockchain. In addition, ESIA has less communication and computation overhead, lower latency, and higher throughput than other baseline authentication schemes

    CyberChain: Cybertwin Empowered Blockchain for Lightweight and Privacy-preserving Authentication in Internet of Vehicles

    Get PDF
    Internet of Vehicles (IoVs) presents promising opportunities for vehicle to everything (V2X) applications, wherein authentication acts as the cornerstone to realize trustworthy vehicular context and to support advanced applications. However, existing authentication schemes mainly depend on centralized servers with both security and privacy issues. In this paper, we propose a CyberTwin (CT) empowered blockchain framework for authentication, namely CyberChain, to reduce both the communication and storage cost while maintaining vehicular privacy. By designing a blockchain system in the cyberspace, we decouple the consensus process from the physical world, so that the operation cost of blockchain can be reduced. A Privacy-Preserving Parallel Pedersen Commitment (P4C) algorithm is designed to protect the privacy of vehicles and accelerate the authentication process. To further enhance the operation efficiency of CyberChain, we propose a Diffused Practical Byzantine Fault Tolerance (DPBFT) mechanism to reach consensus in the cyberspace that can reduce consensus latency. The proposed cyberchain framework and the associated mechanisms are evaluated by qualitative analysis and simulations. The evaluation results demonstrated that the proposed cyberchain based framework significantly improves the authentication performance in terms of authentication latency, privacy, communication overhead and storage cost

    A Threat Model for Vehicular Fog Computing

    Get PDF
    Vehicular Fog Computing (VFC) facilitates the deployment of distributed, latency-aware services, residing between smart vehicles and cloud services. However, VFC systems are exposed to manifold security threats, putting human life at risk. Knowledge on such threats is scattered and lacks empirical validation. We performed an extensive threat assessment by reviewing literature and conducting expert interviews, leading to a comprehensive threat model with 33 attacks and example security mitigation strategies, among others. We thereby synthesize and extend prior research; provide rich descriptions for threats; and raise awareness of physical attacks that underline importance of the cyber-physical manifestation of VFC

    Secure protocol for ad hoc transportation system

    Full text link
    Abstract—We define an ad hoc transportation system as one that has no infrastructure such as roads (and lanes), traffic lights etc. We assume that in such a system the vehicle are autonomic and can guide and direct themselves without a human driver. In this paper we investigate how a safe distance can be maintained between vehicles. A vehicle which has been compromised by an adversary can cause serious chaos and accidents in such a network (a denial of service type of attack). A simple key management scheme is then introduced to ensure secure communications between the components of the system. Keywords–collision avoidance, cyber-physical systems, secure communications I

    Secure Harmonized Speed Under Byzantine Faults for Autonomous Vehicle Platoons Using Blockchain Technology

    Get PDF
    Autonomous Vehicle (AV) platooning holds the promise of safer and more efficient road transportation. By coordinating the movements of a group of vehicles, platooning offers benefits such as reduced energy consumption, lower emissions, and improved traffic flow. However, the realization of these advantages hinges on the ability of platooning vehicles to reach a consensus and maintain secure, cooperative behavior. Byzantine behavior [1,2], characterized by vehicles transmitting incorrect or conflicting information, threatens the integrity of platoon coordination. Vehicles within the platoon share vital data such as position, speed, and other relevant information to optimize their operation, ensuring safe and efficient driving. However, Byzantine behavior in AV platoons presents a critical challenge by disrupting coordinated operations. Consequently, the malicious transmission of conflicting information can lead to safety compromises, traffic disruptions, energy inefficiency, loss of trust, chain reactions of faults, and legal complexities [3,4]. In this light, this thesis delves into the challenges posed by Byzantine behavior within platoons and presents a robust solution using ConsenCar; a blockchain-based protocol for AV platoons which aims to address Byzantine faults in order to maintain reliable and secure platoon operations. Recognizing the complex obstacles presented by Byzantine faults in these critical real-time systems, this research exploits the potential of blockchain technology to establish Byzantine Fault Tolerance (BFT) through Vehicle-to-Vehicle (V2V) communications over a Vehicular Ad hoc NETwork (VANET). The operational procedure of ConsenCar involves several stages, including proposal validation, decision-making, and eliminating faulty vehicles. In instances such as speed harmonization, the decentralized network framework enables vehicles to exchange messages to ultimately agree on a harmonized speed that maximizes safety and efficiency. Notably, ConsenCar is designed to detect and isolate vehicles displaying Byzantine behavior, ensuring that their actions do not compromise the integrity of decision-making. Consequently, ConsenCar results in a robust assurance that all non-faulty vehicles converge on unanimous decisions. By testing ConsenCar on the speed harmonization operation, simulation results indicate that under the presence of Byzantine behavior, the protocol successfully detects and eliminates faulty vehicles, provided that more than two-thirds of the vehicles are non-faulty. This allows non-faulty vehicles to achieve secure harmonized speed and maintain safe platoon operations. As such, the protocol generalizes to secure other platooning operations, including splitting and merging, intersection negotiation, lane-changing, and others. The implications of this research are significant for the future of AV platooning, as it establishes BFT to enhance the safety, efficiency, and reliability of AV transportation, therefore paving the way for improved security and cooperative road ecosystems
    corecore