2,142 research outputs found

    Employing Antenna Selection to Improve Energy-Efficiency in Massive MIMO Systems

    Get PDF
    Massive MIMO systems promise high data rates by employing large number of antennas, which also increases the power usage of the system as a consequence. This creates an optimization problem which specifies how many antennas the system should employ in order to operate with maximal energy efficiency. Our main goal is to consider a base station with a fixed number of antennas, such that the system can operate with a smaller subset of antennas according to the number of active user terminals, which may vary over time. Thus, in this paper we propose an antenna selection algorithm which selects the best antennas according to the better channel conditions with respect to the users, aiming at improving the overall energy efficiency. Then, due to the complexity of the mathematical formulation, a tight approximation for the consumed power is presented, using the Wishart theorem, and it is used to find a deterministic formulation for the energy efficiency. Simulation results show that the approximation is quite tight and that there is significant improvement in terms of energy efficiency when antenna selection is employed.Comment: To appear in Transactions on Emerging Telecommunications Technologies, 12 pages, 8 figures, 2 table

    Reduced Switching Connectivity for Large Scale Antenna Selection

    Get PDF
    In this paper, we explore reduced-connectivity radio frequency (RF) switching networks for reducing the analog hardware complexity and switching power losses in antenna selection (AS) systems. In particular, we analyze different hardware architectures for implementing the RF switching matrices required in AS designs with a reduced number of RF chains. We explicitly show that fully-flexible switching matrices, which facilitate the selection of any possible subset of antennas and attain the maximum theoretical sum rates of AS, present numerous drawbacks such as the introduction of significant insertion losses, particularly pronounced in massive multiple-input multiple-output (MIMO) systems. Since these disadvantages make fully-flexible switching suboptimal in the energy efficiency sense, we further consider partially-connected switching networks as an alternative switching architecture with reduced hardware complexity, which we characterize in this work. In this context, we also analyze the impact of reduced switching connectivity on the analog hardware and digital signal processing of AS schemes that rely on channel power information. Overall, the analytical and simulation results shown in this paper demonstrate that partially-connected switching maximizes the energy efficiency of massive MIMO systems for a reduced number of RF chains, while fully-flexible switching offers sub-optimal energy efficiency benefits due to its significant switching power losses.Comment: 14 pages, 11 figure

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843
    • …
    corecore