5,859 research outputs found

    Exploring heterogeneity of unreliable machines for p2p backup

    Full text link
    P2P architecture is a viable option for enterprise backup. In contrast to dedicated backup servers, nowadays a standard solution, making backups directly on organization's workstations should be cheaper (as existing hardware is used), more efficient (as there is no single bottleneck server) and more reliable (as the machines are geographically dispersed). We present the architecture of a p2p backup system that uses pairwise replication contracts between a data owner and a replicator. In contrast to standard p2p storage systems using directly a DHT, the contracts allow our system to optimize replicas' placement depending on a specific optimization strategy, and so to take advantage of the heterogeneity of the machines and the network. Such optimization is particularly appealing in the context of backup: replicas can be geographically dispersed, the load sent over the network can be minimized, or the optimization goal can be to minimize the backup/restore time. However, managing the contracts, keeping them consistent and adjusting them in response to dynamically changing environment is challenging. We built a scientific prototype and ran the experiments on 150 workstations in the university's computer laboratories and, separately, on 50 PlanetLab nodes. We found out that the main factor affecting the quality of the system is the availability of the machines. Yet, our main conclusion is that it is possible to build an efficient and reliable backup system on highly unreliable machines (our computers had just 13% average availability)

    Reliability of Heterogeneous Distributed Computing Systems in the Presence of Correlated Failures

    Get PDF
    While the reliability of distributed-computing systems (DCSs) has been widely studied under the assumption that computing elements (CEs) fail independently, the impact of correlated failures of CEs on the reliability remains an open question. Here, the problem of modeling and assessing the impact of stochastic, correlated failures on the service reliability of applications running on DCSs is tackled. The service reliability is modeled using an integrated analytical and Monte-Carlo (MC) approach. The analytical component of the model comprises a generalization of a previously developed model for reliability of non-Markovian DCSs to a setting where specific patterns of simultaneous failures in CEs are allowed. The analytical model is complemented by a MC-based procedure to draw correlated-failure patterns using the recently reported concept of probabilistic shared risk groups (PSRGs). The reliability model is further utilized to develop and optimize a novel class of dynamic task reallocation (DTR) policies that maximize the reliability of DCSs in the presence of correlated failures. Theoretical predictions, MC simulations, and results from an emulation testbed show that the reliability can be improved when DTR policies correctly account for correlated failures. The impact of correlated failures of CEs on the reliability and the key dependence of DTR policies on the type of correlated failures are also investigated

    Maximizing Service Reliability in Distributed Computing Systems with Random Node Failures: Theory and Implementation

    Get PDF
    In distributed computing systems (DCSs) where server nodes can fail permanently with nonzero probability, the system performance can be assessed by means of the service reliability, defined as the probability of serving all the tasks queued in the DCS before all the nodes fail. This paper presents a rigorous probabilistic framework to analytically characterize the service reliability of a DCS in the presence of communication uncertainties and stochastic topological changes due to node deletions. The framework considers a system composed of heterogeneous nodes with stochastic service and failure times and a communication network imposing random tangible delays. The framework also permits arbitrarily specified, distributed load-balancing actions to be taken by the individual nodes in order to improve the service reliability. The presented analysis is based upon a novel use of the concept of stochastic regeneration, which is exploited to derive a system of difference-differential equations characterizing the service reliability. The theory is further utilized to optimize certain load-balancing policies for maximal service reliability; the optimization is carried out by means of an algorithm that scales linearly with the number of nodes in the system. The analytical model is validated using both Monte Carlo simulations and experimental data collected from a DCS testbed

    An efficient and versatile approach to trust and reputation using hierarchical Bayesian modelling

    No full text
    In many dynamic open systems, autonomous agents must interact with one another to achieve their goals. Such agents may be self-interested and, when trusted to perform an action, may betray that trust by not performing the action as required. Due to the scale and dynamism of these systems, agents will often need to interact with other agents with which they have little or no past experience. Each agent must therefore be capable of assessing and identifying reliable interaction partners, even if it has no personal experience with them. To this end, we present HABIT, a Hierarchical And Bayesian Inferred Trust model for assessing how much an agent should trust its peers based on direct and third party information. This model is robust in environments in which third party information is malicious, noisy, or otherwise inaccurate. Although existing approaches claim to achieve this, most rely on heuristics with little theoretical foundation. In contrast, HABIT is based exclusively on principled statistical techniques: it can cope with multiple discrete or continuous aspects of trustee behaviour; it does not restrict agents to using a single shared representation of behaviour; it can improve assessment by using any observed correlation between the behaviour of similar trustees or information sources; and it provides a pragmatic solution to the whitewasher problem (in which unreliable agents assume a new identity to avoid bad reputation). In this paper, we describe the theoretical aspects of HABIT, and present experimental results that demonstrate its ability to predict agent behaviour in both a simulated environment, and one based on data from a real-world webserver domain. In particular, these experiments show that HABIT can predict trustee performance based on multiple representations of behaviour, and is up to twice as accurate as BLADE, an existing state-of-the-art trust model that is both statistically principled and has been previously shown to outperform a number of other probabilistic trust models
    • ā€¦
    corecore