4 research outputs found

    Empirical Analysis of the Necessary and Sufficient Conditions of the Echo State Property

    Full text link
    The Echo State Network (ESN) is a specific recurrent network, which has gained popularity during the last years. The model has a recurrent network named reservoir, that is fixed during the learning process. The reservoir is used for transforming the input space in a larger space. A fundamental property that provokes an impact on the model accuracy is the Echo State Property (ESP). There are two main theoretical results related to the ESP. First, a sufficient condition for the ESP existence that involves the singular values of the reservoir matrix. Second, a necessary condition for the ESP. The ESP can be violated according to the spectral radius value of the reservoir matrix. There is a theoretical gap between these necessary and sufficient conditions. This article presents an empirical analysis of the accuracy and the projections of reservoirs that satisfy this theoretical gap. It gives some insights about the generation of the reservoir matrix. From previous works, it is already known that the optimal accuracy is obtained near to the border of stability control of the dynamics. Then, according to our empirical results, we can see that this border seems to be closer to the sufficient conditions than to the necessary conditions of the ESP.Comment: 23 pages, 14 figures, accepted paper for the IEEE IJCNN, 201

    Input-to-State Representation in linear reservoirs dynamics

    Get PDF
    Reservoir computing is a popular approach to design recurrent neural networks, due to its training simplicity and approximation performance. The recurrent part of these networks is not trained (e.g., via gradient descent), making them appealing for analytical studies by a large community of researchers with backgrounds spanning from dynamical systems to neuroscience. However, even in the simple linear case, the working principle of these networks is not fully understood and their design is usually driven by heuristics. A novel analysis of the dynamics of such networks is proposed, which allows the investigator to express the state evolution using the controllability matrix. Such a matrix encodes salient characteristics of the network dynamics; in particular, its rank represents an input-indepedent measure of the memory capacity of the network. Using the proposed approach, it is possible to compare different reservoir architectures and explain why a cyclic topology achieves favourable results as verified by practitioners

    Input-to-state representation in linear reservoirs dynamics

    Get PDF

    Learn to Synchronize, Synchronize to Learn

    Get PDF
    In recent years, the machine learning community has seen a continuous growing interest in research aimed at investigating dynamical aspects of both training procedures and perfected recurrent models. Of particular interest among recurrent neural networks we have the Reservoir Computing (RC) paradigm characterized by conceptual simplicity and fast training scheme. Yet, the guiding principles under which RC operates are only partially understood. In this work, we study the properties behind learning dynamical systems and propose a new guiding principle based on Generalized Synchronization (GS), granting to learn a generic task with RC architectures. We show that the well-known Echo State Property (ESP) implies and is implied by GS, so that theoretical results derived from the ESP still hold when GS does. However, by using GS one can profitably study the RC learning procedure by linking the reservoir dynamics with the readout training. Notably, this allows us to shed light on the interplay between the input encoding performed by the reservoir and the output produced by the readout optimized for the task at hand. In addition, we show that - as opposed to the ESP - satisfaction of the GS can be measured by means of the Mutual False Nearest Neighbors index, which makes effective to practitioners theoretical derivations
    corecore