
Learn to Synchronize, Synchronize to Learn

Pietro Verzellia,∗, Cesare Alippia,b, Lorenzo Livic,d

aFaculty of Informatics, Università della Svizzera Italiana, Lugano, 69000, Switzerland.
bDepartment of Electronics, Information and bioengineering, Politecnico di Milano,

Milan, 20133, Italy.
cDepartments of Computer Science and Mathematics, University of Manitoba, Winnipeg,

MB R3T 2N2, Canada.
dDepartment of Computer Science, College of Engineering, Mathematics and Physical

Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom.

Abstract

In recent years, the machine learning community has seen a continuous grow-
ing interest in research aimed at investigating dynamical aspects of both
training procedures and machine learning models. Of particular interest
among recurrent neural networks we have the Reservoir Computing (RC)
paradigm characterized by conceptual simplicity and a fast training scheme.
Yet, the guiding principles under which RC operates are only partially un-
derstood. In this work, we analyze the role played by Generalized Synchro-
nization (GS) when training a RC to solve a generic task. In particular, we
show how GS allows the reservoir to correctly encode the system generating
the input signal into its dynamics. We also discuss necessary and sufficient
conditions for the learning to be feasible in this approach. Moreover, we ex-
plore the role that ergodicity plays in this process, showing how its presence
allows the learning outcome to apply to multiple input trajectories. Finally,
we show that satisfaction of the GS can be measured by means of the Mu-
tual False Nearest Neighbors index, which makes effective to practitioners
theoretical derivations.

Keywords: Reservoir Computing, Echo State Property, Dynamical
Systems, Chaos Synchronization

∗Corresponding author: verzep@usi.ch

Preprint submitted to ArXiv May 12, 2021

ar
X

iv
:2

01
0.

02
86

0v
3

 [
cs

.L
G

]
 1

1
M

ay
 2

02
1

1. Introduction

The scientific community has seen a rising interest in research aimed at
coupling machine learning and dynamical systems. In fact, recent investiga-
tions have shown how the theory developed for dynamical systems was useful
to understand machine learning algorithms [1, 2, 3, 4]; the opposite holds,
e.g. see [5, 6, 7, 8, 9].

Within machine learning the Reservoir Computing (RC) paradigm [10, 11]acro:RC
is particularly appealing due to its simplicity, cheap training mechanism and
state-of-the-art results obtained in solving various tasks [12, 13, 14, 15]. RC
was introduced independently by Jaeger [16] (who used the term Echo State
Network), Maass et al. [17] (Liquid State Machine) and Tiňo and Dorffner
[18] (Fractal Predicting Machine). In order to account for a Neural Network
implementation of RC we use the term Reservoir Computing Network (RCN)acro:RCN
in the sequel. The working principle of RC relies on creating a representation
of the input sequence by feeding it to an untrained dynamical system, the
reservoir, which should encode all relevant dynamics associated with the
input. Learning focuses solely on the readout function, which is trained to
generate the desired output, given the encoded dynamics and the task at
hand.

Some recent efforts have been devoted to understanding the encoding and
learning mechanisms of RC and their capability to approximate dynamical
systems. In particular, it was proven that RCN are universal function ap-
proximators [19] and that their representations are rich enough to correctly
embed dynamical systems through their state-space representation [20, 21].
Theoretical analysis of this learning principle led to many results about their
expressive power [22, 23, 24, 25, 26]. Moreover, interesting results can be
derived when assuming linear dynamics [27, 28, 29, 30, 31]. Due to its sim-
ple training mechanism, RC is also particularly appealing for neuromorphic
computing and other hardware implementations; see [32] for a recent review.

The Echo State Property (ESP) was introduced in the seminal work byacro:ESP
Jaeger [16] as a necessary property for an effective and reliable computation.
Basically, ESP consists in requiring that the reservoir state asymptotically
depends only on the received input (i.e., the reservoir state echoes the input)
and does not depend on initial conditions of the reservoir. Notably, even
though most theoretical results assume the ESP to hold [19, 20], existing
sufficient conditions are too restrictive [33] to be used in practical applica-
tions and necessary ones seem to suffice in most cases [34, 35]. In practice,

2

some less restrictive criteria to verify satisfaction of the ESP have been pro-
posed over time [33, 36, 37, 10] as well as a general formulation for the ESP
accounting for multiple, stable responses to a driving input sequence [38].
Yet, the problem with the ESP verification lies on the fact that the ESP
definition does not explicitly take into account the structure of the driving
input, which is simply defined as a sequence of values in an admissible range.
As a consequence, satisfaction of ESP cannot be verified but in simple cases
for which the mathematics is amenable.

In order to verify the ESP, we propose a new method based on a synchro-
nization between dynamical systems. In recent years, the concept of synchro-
nization has been applied to RC and yielded interesting results [39, 40, 41, 42].
The possibility of generalizing the concept of synchronization was first inves-
tigated by Afraimovich et al. [43] and Rulkov et al. [44], who introduced
the term Generalized Synchronization (GS). Successively, different empiricalacro:GS
methods for verifying the presence of GS from data have been introduced
[45, 46]. A review on synchronization between dynamical systems was re-
cently published [47].

Recently, the GS was compared to the ESP and proposed as the basic
working principle of RC [12, 39, 40, 42]. In particular, under the assumption
that there exists a dynamical system (called a source system) generating
the input data, the ESP for the reservoir w.r.t. a driving input sequence is
equivalent to the GS between the reservoir and the (unknown) source system,
with an additional requirement of uniqueness [42]. This implies the existence
of a stable synchronization manifold to which the reservoir and the source
system converge, and of a synchronization function mapping states of the
latter to states of the former.

In this work, we build on the seminal ideas developed in [12, 39] and
discuss a novel methodology for dealing with a generic task. In particular,
we focus on the implication that GS has on the learning mechanism of RC.
The scope of this work is two-fold: we aim at properly characterizing the
equivalence between GS and ESP to show why GS is needed in order for the
RC paradigm to work, and use these facts to interpret the RC functionality
under a new light. More specifically, the novel aspects of this work can be
summarized as follows: we show that when GS occurs, the reservoir training
may be viewed as a nonlinear basis expansion of the (unknown) source system
state. This interpretation leads us to the development of two theorems,
providing necessary and sufficient conditions for the learning to be realizable
in the RC-framework. Moreover, we show that the ergodicity of the source

3

system leads to the applicability of the learning methods to a general set
of trajectories. We then relax the realizability assumption and discuss why
the GS is necessary in that situation for the learning to happen. Finally, we
show how GS can be easily verified for an RCN driven by an input sequence,
thus allowing one to assess the degree to which GS holds for a specific input
sequence driving the dynamics. For this we use an index, called the Mutualacro:MFNN
False Nearest Neighbors (MFNN), and empirically show that it is correlated
with the RC performance on the tasks at hand.

The paper is organized as follows: in Sec. 2 we introduce the theoretical
framework, discussing the task we aim at solving and how this can be done
with RC. In Sec. 3 we present the concept of synchronization for dynamical
systems and formalize the similarities with the concept of ESP. Sec. 4 con-
tains the novel theoretical contributions of this paper and in Sec. 5 we carry
out simulations to validate the developed theory. Finally, we draw conclu-
sions in Sec. 6. The paper contains five appendices located at the end of this
manuscript.

2. Reservoir computing
sec:RC

In this section we introduce the RC setup by adopting the terminology
used in [11]; the system formalization is general, independent of the particular
form of the source system or the reservoir. A schematic representation of this
approach is depicted in Fig. 1.

Source System Measurements Reservoir Prediction

Target

Figure 1: Diagram representing the RC framework described in Section 2. The source
system s(t) evolves autonomously and generates the targets y(t) and the input measure-
ments u(t). The latter is coupled to the reservoir r(t) so that its dynamics are dependent
on (i.e., driven by) u(t). The readout ψ is then trained to generate the prediction ŷ(t),
which is an approximation of y(t). fig:listening

4

2.1. Task description

Let us consider a discrete-time autonomous, noise-free source system de-
scribed by:

s(t+ τ) = g(s(t)) (1) eqn:source_system

where s(t) ∈ Rds denotes ds-dimensional system state at time t and τ is the
time increment. The source system generates the time series to be exploited
by the RC architecture to solve a learning task. Assume g to be differ-
entiable and invertible, and that s(t) asymptotically approaches and stays
in a bounded attractor, As. We are interested in the situation where g is
unknown and we do not have direct access to the source system states.

The source system (1) produces two outputs, namely u(t) ∈ Rdu and
y(t) ∈ Rdy :

u(t) =h(s(t)) (2a) eqn:measurement

y(t) =k(s(t)) (2b) eqn:target

We name u as the measurements (or observables), i.e., the available input
data. The vector-valued function h(·) is introduced to account for the fact
that a function of s is used to generate the data. We refer to y as the
targets, i.e., the supervised information describing the task to be learned. The
targets are generated via a vector-valued function k(·). Both h(·) and k(·)
are unknown. We assume that there is no measurement noise, as commonly
done in the related literature [11, 11, 20, 21].

Both u(t) and y(t) are accessible for t < 0 (training phase), but for t ≥ 0
only u(t) is available. Our goal is then to use the continued knowledge about
u to generate a valid prediction ŷ(t) of y(t), for t ≥ 0. We call this phase
the predicting phase.1 Figure 2 provides an example of the framework taken
into account.

A typical instance of this problem is the forecasting task, say to predict
the value u(t) will assume d times ahead, hence providing y(t) = u(t + d).
Another relevant task (called the observer task [11]) requires to estimate the
state of the system having information about u(t) only, i.e.,y(t) = s(t). An
example of the framework is provided in Fig. 2.

1We choose this term – following [11] – to avoid the possible ambiguity between the
testing and validation phases typically used in machine learning tasks, since this distinction
is not well-defined in this context.

5

20

10

0

10

20
M

ea
su

re
m

en
t

u

80 60 40 20 0 20 40 60 80
t

0

200

400

600

800

1000

1200

1400

Ta
rg

et

y
y

Figure 2: An example of the problem under study, where both u and y are mono-
dimensional. The input value u is always provided (top figure), while the target y is
only accessible at training time, i.e., for t < 0 (bottom figure, blue solid line). The goal is
to generate a prediction ŷ for t > 0 by using the input only. Here, the source system is
the Rössler system (see Appendix Appendix D), the input is u(t) = x(t) while the target
is y(t) = z2(t), where x(t) and z(t) are two variables constituting the Rössler system. fig:task_example

2.2. Training phase

For the training phase, we assume to have access to a (possibly infinite)
series of measurements u(t) and a paired series of target values y(t). The goal
of the training phase is to produce a function which generates an accurate
prediction ŷ(t) of the target when reading u(t). The problem lies on the fact
that the target values y depend on the full state of the source s, while only
the measurements u are accessible. So, one needs to be able to represent the
full state of the source from the measurements only and then use it to esti-
mate the target function. In the RC approach, these two parts are explicitly

6

separated. To represent the full state, one uses a different dynamical system,
the reservoir, which creates a meaningful representation of the source system
s when driven by the measurements u. We will call this part the listening
phase. Then, a function must be used to compute the desired output from
the reservoir states. This is done by estimating a readout function, which
takes a reservoir state as input and produces an output. This phase is called
the fitting phase.

Listening. In the listening phase, the training measurements are used as
input to the reservoir, which is modelled as a discrete-time2 deterministic
driven dynamical system:

r(t+ τ) = f(r(t),u(t+ τ)) (3) eqn:listening

Here r(t) ∈ Rdr is the reservoir state. We assume f to be a differentiable
function controlling the reservoir evolution.

Fitting. Fitting consists in determining the so-called readout function, ψθ,
which reads the reservoir state r(t) and provide an estimate for the out-
put y(t). The parameters θ are selected by a fitting procedure yielding a
parameter configuration θ̂ such that:

ŷ(t) = ψθ̂(r(t)) ≈ y(t) (4) eqn:training

From now on we will drop the θ̂-notation and simply write ψ for ψθ̂.
It is important to point out that this is an offline learning procedure:

the enriched input representation is first created through the reservoir states
and only then the readout function is computed in one shot. Online learning
procedures may be exploited as well, e.g. see [3, 39].

2.3. Predicting phase

After training is complete, the system will be used to predict new target
values (predicting phase).It follows that, in this phase the reservoir is driven
by u(t) and the new output is ŷ(t). Being the readout time-independent,

2In fact, the theory also applies to continuous-time models. In [12] the authors dis-
cuss the theory for discrete-time systems, but then use a continuous-time model in the
experimental section.

7

and in absence of an output feedback mechanism, the reservoir is subject to
the same dynamics during training and predicting phases, since the network
continues to be driven by u.3 In other words, the dynamical part of the
system does not “perceive” in any way the change between the listening and
the predicting phase: this is why the ESP was introduced in this setting.

3. Synchronization and echo-state property
sec:GS

3.1. Drive-response systems

In this section we introduce the concept of GS and relate it to the concept
of ESP. To do so, we start by considering the source system (1) together
with the reservoir (3) in a drive-response system:eqn:drive_response

s(t+ τ) = g(s(t)) (Drive) (5a) eqn:drive

r(t+ τ) = f(r(t),u((t+ τ))) = f(r(t),h(s(t+ τ))) (Response) (5b) eqn:response

Where (5a) is the drive and (5b) the response. Together, they form an
autonomous (ds + dr)-dimensional dynamical system which can be written
as:

x(t+ τ) = G(x(t)) (6) eqn:original

where x is simply the concatenation of s and r and, accordingly,G represents
the concatenation of the action of g and f .

Let us now assume that (6) has an attractor A with a basin of attraction
B.4 This attractor can be expressed as:

A = As ×Ar

where As (respectively, Ar) is the projection of A into the ds(respectively,
dr) coordinates of system (5a) (respectively, (5b)). The same holds for the
basin of attraction B of A, which can be expressed in an analogous way as

B = Bs × Br

3We implicitly assume that u is characterized by the same dynamics in both phases,
implying some form a stationarity of the source system. Otherwise, the learning would be
unfeasible without proper adaptation mechanisms to changes in the driving input. Namely,
we are assuming that the source system (1) has reached its attractor in the listening phase
and that it will continue to stay on it.

4This assumption is required just to simplify the exposition. For the case where the
system has multiple attractors see, for instance, [39].

8

It is important to note that, because (5a) is an autonomous dynamical
system, As is its attractor and Bs its basin of attraction. The nature of Ar

and Br is more complex, as (5b) is a non-autonomous dynamical system,
for which the definition of attractor is more complicated (and non-uniquely
defined [48, 38]): for our purpose, Ar and Br can be simply thought of as sets
obtained by a projection of the whole system considering only the variables
related to the response system.

3.2. Generalized Synchronizationsubsec:GS
As stated in the introduction, the concept of synchronization has been

raising interest in the RC community. Here we introduce the GS, which is
a generalization of the concept of synchronization for non-identical systems.
A short introduction of the simpler case in which the synchronization oc-
curs between identical system can be found in Appendix Appendix A). We
introduce GS following the definition used in [46]:

def:GS Definition 1 (Generalized synchronization). A system like (5) possesses the
property of Generalized Synchronization (GS) when there exist a transfor-
mation

φ : Rds → Rdr (7) eqn:GS_func

s 7→ φ(s) (8)

mapping the states of the drive into the states of the response for which:

lim
t→∞
‖r(t)− φ(s(t))‖ = 0 (9) eqn:GS_asymptotic

This means that the response state r is asymptotically given by the state
of the driving system s and there exists a synchronization manifold M in
the full state-space of the system defined by the equation:

r = φ(s). (10) eqn:GS_condition

i.e., M := {(s, r) : r = φ(s)}. Clearly M ⊆ A. Moreover we can
define BM as the set of initial conditions for which (9) holds. Then BM ⊆ B.
As noted in [44], if a synchronizing relationship of the form (10) occurs, it
means that the motion of the system in the full space has collapsed onto a
subspace which is the manifold of the synchronized motionM. This manifold
is invariant, in the sense that r(t) = φ(s(t)) implies r(t+ τ) = φ(s(t+ τ)).
Moreover, (9) implies that such a manifold must be attracting [46].

9

Since the relationship defined in (9) should hold on the attractor As,
which the drive system approaches asymptotically, it makes sense to write the
attractor of the response system as Ar = φ(As). We assume φ to be smooth
(which can be theoretically granted for a large class of systems [42]). The
case in which the synchronization function exists but is complicated or even
fractal is called Weak Synchronization [49]; this case is not taken into account
in our paper. If φ equals the identity transformation, this general definition
of synchronization coincides with the definition of identical synchronization
(see Appendix Appendix A).

3.3. Echo State Property

The motivation behind the original ESP formulation is the following:
for learning to be realizable, it is crucial that the current network state
r(t) is uniquely determined by the input sequence {u(t)}. Such a definition
takes into account a specific input sequence, with values in a compact set
U ; in practical applications, the input will always be bounded. Also the
compactness of the reservoir state-space is required, but it is automatically
guaranteed if one considers a bounded nonlinear activation functions (like
tanh).

def:compatibility Definition 2 (Compatibility). We say that a state sequence {r(t)} is com-
patible with a bounded input sequence {u(t)} when, for all t:

r(t+ τ) = f(r(t),u(t+ τ))

Definition 3 (ESP [16]). The system has the Echo State Property (ESP) if
for every input sequence {u(t)}, for any state sequences {r1(t)} and {r2(t)}
compatible with {u(t)} it holds that r1(t) = r2(t) for each t.

This means that a state r(t) is uniquely determined by any left-infinite
input sequence. This can be stated in an equivalent way by requiring the
existence of a input echo function E = (e1, . . . , edr) where ei : U−N → R such
that for all left-infinite input histories . . . ,u(t− 1),u(t) the current state is
given by:

r(t) = E(. . . ,u(t− 1),u(t))

The assumption that the input u(t) is given by (2a) (i.e., it is a function
of the state of an autonomous dynamical system) makes it possible to explore

10

the matter in more dept. We start by noticing that, in this framework, a
sequence {u(t)} is uniquely defined by an initial condition of (1) as:

u(t) = h(s(t) = h(gt(s0))

which holds for any t as g is assumed to be invertible. This means that each
left-infinite sequence of measurements can be uniquely associated to a state
of the source system (1) so that:

E(. . . ,u(t− 1),u(t)) = E(. . . ,h ◦ g−1 ◦ s(t),h ◦ s(t))

which is clearly a function of s(t) only and is, in fact, (10). Within our frame-
work, the existence of an input echo function is equivalent to the existence
of a synchronization function, i.e.:

E(. . . ,u(t− 1),u(t)) = φ(s(t))

Yet, the analogy is not perfect as the ESP requires φ to be unique. Non-
uniqueness means that there exists p > 1 different synchronization manifolds,
each one given by a different synchronization function Mi := {(s, r) : r =
φi(s)}, i = 1, . . . , p. In [42] the authors show that this phenomenon can
be avoided by ensuring local contractivity of f , i.e. f should operate as a
contraction on each separate manifold Mi.

When evaluating the reservoir system performance (which is needed in
order to perform hyper-parameters tuning), one usually compares single real-
izations of the reservoir and of the input signal, i.e. a specific instance of the
reservoir with its initial condition is trained on an input signal. This means
that the uniqueness is not practically exploited in most practical context,
and sometimes it might even be detrimental (see the concept of “echo index”
introduced in [38]): for this reason, in this paper we simply explore the GS
disregarding its uniqueness.

4. Generalized synchronization and learning
sec:implications

In the scenario depicted above, one uses the reservoir r to create a rep-
resentation of the input, which is finally processed by the readout ψ. The
goal is to generate a mapping from s to y and then to use such readout for
generating ŷ(t) for values of u(t) which are not in the training set (i.e., for
t ≥ 0). Since s is unknown, what one really assumes is that it is possible

11

to predict y from the knowledge of the whole history of u. This is, in fact,
an implication of Takens embedding theorem [50] and the feasibility of such
a procedure was recently proved in the context of RC by Hart et al. [20]5.

It is really important to emphasize the fact that we only consider the
case where the fitting of the readout does not affect the reservoir dynamics
in any way. The representation of the attractor of s into the reservoir states
r by the use of the input sequence u is done in the listening phase, which
is (in machine learning parlance) unsupervised. The fitting consists of trying
to estimate the static function k mapping the state s to the desired output
y, i.e,

ŷ(t) := ψ(r(t)) ≈ k(s(t)) = y(t) ∀t (11) eqn:readout_goal

We now discuss the role that the listening phase has on the learning
process.

4.1. Unsupervised system reconstruction during the listening phase

Let us consider the time interval (ts, 0), in which we assume that the
GS has occurred; remember that we assume negative times for the training
phase, so ts < 0. We consider the reservoir states generated in this interval,

R(ts,0) =

 | | | |
r(ts) r(ts + τ) . . . r(0)
| | | |

 =

=

 | | | |
r(ts) f(r(ts),u(ts)) . . . f(r(−τ),u(−τ))
| | | |

 (12) eqn:R_matrix

GS guarantees that there exists a function mapping the source system
states to the reservoir states and also its invariance. This means that

r(t) = φ(s(t))⇒ r(t+ τ) = φ(s(t+ τ)) = φ(g(s(t))) (13) eqn:implication_invariance

so that (12) can be written as follows:

R(ts,0) =

 | | | |
φ(s(ts)) φ(s(ts + τ)) . . . φ(s(0))
| | | |

 (14) eqn:R_static

5Note that what they call echo state map (see Theorem 2.2.2 in [20]) corresponds to
the synchronization function in (10)

12

Note that φ is a time-independent function that is the same for all s.
Since by assumption dr > ds, we can think of φ as an attempt to expand
the source system state-space (which is unknown) into a higher-dimensional
space, in the same fashion as the well-known reproducing kernel Hilbert space
mechanism behind kernel methods [51]: the reservoir dynamics performs a
sort of “nonlinear basis expansion” of the (unknown) attractor of s. The use
of the synchronization function φ provides a sound theoretical framework to
the fitting process, and the relation (10) can be seen a sound formulation
of the “reservoir trick”; see [52]. Moreover note that such an expansion φ
was not computed or estimated from data, but was “obtained” as a result
of driving the reservoir with the input sequence under consideration: this
means that the mapping is “informed” of the dynamics. Accordingly, we can
interpret (11) as follows:

ŷ(t) = ψ(r(t)) = ψ(φ(s(t))) ≈ k(s(t)) = y(t) (15) eqn:readout_true

4.2. Learning realizability

We define the concept of “realizable learning” [53] as the situation where
the readout is perfectly able to reconstruct the targets by using the reservoir
states. More formally,

def:realizability Definition 4 (Learning realizability). We say that the learning is realizable
if there exists a readout ψ such that,

y(t) = ψ(r(t)), ∀t (16) eqn:realizability

The following theorem proves that for the learning to be realizable for
a trajectory of the source system, there must be a function mapping that
trajectory into the trajectory of the reservoir. First we introduce some no-
tation. Let us denote with S ⊂ As the set containing all s(t), for all t (this
is usually called the orbit of a system). Analogously, we define R ⊂ Ar as
the set of all r(t), for all t. We define Y as the result of applying k to each
point in S, in short Y := k(S).

Theorem 1. A necessary condition for learning to be realizable is that for
each r ∈ R such that ψ(r) = y , there exists a function F : S → R such
that r = F(s), where s is such that by k(s) = y.

Proof. Realizability of learning implies that ψ is surjective when mapping
R into Y . The surjectivity of k is guaranteed by the way we constructed Y .

13

But because different source system states could result in the same target, k
may not be an injective function. The same holds for ψ. We define ψ†(y)
as a function mapping each y onto an r: if ψ is also injective, then ψ†

corresponds to the inverse of ψ, but in general it is not. These functions are
called right-inverse since ψ ◦ ψ† is the identity but ψ† ◦ ψ is not. Since by
definition y(t) = k(s(t)), it will then be possible to construct the function
F as follows:

F = ψ† ◦ k (17) eqn:F_construct

Such a function maps all s into the corresponding targets y and inverts the
readout function ψ so that it maps each target to a corresponding reservoir
state r.

So far, we have shown that (17) maps each s to an r. We also need
to make sure that each r can be written as F(s). This is granted by our
assumption (surjectivity of ψ) which tells us that each y can be written as
ψ(r). Then, using an argument analogous to the one above, we can associate
each y ∈ Y to an s ∈ S by defining k†. Again, this corresponds to the inverse
of k only if k is also injective. Note that, in general, distinct values of r might
be associated to the same s (and viceversa). This shows that if learning is
realizable, then F must exist.

The theorem also implies that if F does not exist, then learning is not re-
alizable. So, any successful training procedure must (i) develop an (implicit)
mapping from S to R and (ii) find a suitable readout. Yet, the existence
of F does not necessarily imply the realizability of learning: we have no
guarantees that, in the presence of such a mapping, a readout solving the
problem can be found. Moreover, the fact that learning is not realizable does
not necessarily imply that F does not exist: the problem might simply be
that we are not able to conceive the right readout.

We now prove that, by requiring F to be injective, we can always con-
struct a readout which correctly solves the problem.

thm:sufficient_realizability Theorem 2. A sufficient condition for the learning to be realizable is that
there exists a function F such that for all r ∈ R, r = F(s) and F is
injective.

Before proving the theorem, we make a remark:

oss:invertibility Remark 1. In Theorem 2, the condition that r = F(s) must hold for all
r ∈ R means that F : S → R must be surjective. This means that when F
is injective, it is in fact bijective and so, invertible.

14

The proof of the theorem in now trivial:

Proof. As discussed in Remark 1, the injectivity of F grants the existence
of its inverse F−1. The readout function solving (16) then exists and it is
given by:

ψ = k ◦F−1 (18) eqn:psi_construction

The fact that F is injective means that it always maps distinct s into
distinct r. Without it, F may map two distinct s1, s2 into the same r =
F(s1) = F(s2): the realizability of learning then depends on whether k(s1) =
k(s2) = y or not. This is why the existence of F is not sufficient by itself.

It is important to note that both k and F are unknown in our problem
setting, so that the theorem only guarantees the possibility of finding the
right ψ but does not provide a constructive way of finding it. Therefore, when
learning is not realizable it is generally impossible to understand whether the
problem is related to F , to ψ, or even to the both of them.

Notably, as we will discuss later, this problem can be bypassed by con-
sidering the synchronization function φ as a surrogate for F . As φ is only
related to the dynamical evolution of the reservoir (listening phase), we can
discuss its existence and properties disregarding the readout.

This shows the importance of φ in the context of RC: it can be used to
asses the quality of the representation of the unknown source system that the
reservoir has encoded in its state. This allows one to disentangle the problem
of embedding the input (which is done in an unsupervised way during the
listeining phase) from the the problem of finding the best readout to predict
the target (which is a supervised problem, faced in the fitting phase). This
fact is of particular interest as most of the hyperparameters that are usually
optimized (e.g., the spectral radius of the connectivity matrix, its sparsity,
the input scaling, the activation function) affect the listening phase only and,
therefore, the synchronization. Hence, their analysis and optimization can
be performed disregarding the fitting procedure.

Finally, we point out that Theorem 2 formally proves that – as suggested
in other works [12, 39] – the existence of an invertible synchronization func-
tion is sufficient for the RC paradigm to work (provided that the readout
is able to correctly approximate the target). We proved that this condition
applies not only in the generative frameworks (i.e., when y(t) = s(t + 1))
which is the one studied in [12, 39], but to any generic target y(t) = k(s(t)).

15

4.3. Error on the whole attractor

Since the readout ψ is generated after the listening phase, we have no
guarantees that, in general, it will continue to correctly reproduce the target
also in the predicting phase. More in detail, after observing a series of mea-
surements u(t) and targets y(t) coming from an unknown trajectory of the
source system s(t), we want to learn a readout ψ which is able to predict
the targets even for future times.

Since we have assumed that the source system (1) has a unique attractor
A, this goal can be achieved by learning a readout valid for all the y = k(s),
for s ∈ A. In the machine learning parlance, this can be described as follows:
a single trajectory plays the role of a sample, while the attractor plays the
role of the data-generating process. This becomes possible by assuming the
attractor As to be ergodic [54]. In fact, the existence of an ergodic attractor
guarantees that a sufficiently long trajectory will be a “good sampling” of
the whole attractor (see [21] for a discussion in the generative framework).
Moreover, as all trajectories starting from the basin of attraction Bs will
approach As, this procedure allows to learn a prediction model suitable for
a full set of trajectories by observing only one.

To do so, let us define the loss function:

L(y(t), ŷ(t)) = ‖y(t)− ŷ(t)‖2 (19) eqn:RMSE

where ‖·‖2 is the L2-norm. We refer to (19) as Root Mean Squared Er-acro:RMSE
ror (RMSE).6 The learning realizability trivially implies that there exists a
readout for which:

1

T

T∑
t=ts

L(y(t), ŷ(t)) = 0 (20)

since L(y(t), ŷ(t)) = 0,∀t. Note that time starts at t = ts because we want
to remove transient effects (as our discussion is valid on the attractor only).

By expanding y and ŷ, we get:

1

T

T∑
t=ts

L(k(s(t)),ψ(r(t))) = 0 (21)

6Note that different choices can be made for L and the results do not depend on its
particular form. We use the RMSE because it is the one we use in the esperimental section.

16

The existence of a function F (Thm. 2) allows us to write r(t) = F(s(t)),
so that our loss becomes

L(k(s(t)),ψ(r(t))) = L(k(s(t)),ψ(F(s(t)))) = L(s(t)) (22)

where the last equality stresses the fact that L is a function of s(t) only (with
an abuse of notation on the function L). Taking the limit for T → ∞, we
can now exploit the ergodicity of As and obtain:

0 = lim
T→∞

1

T

T∑
t=ts

L(y(t), ŷ(t)) = lim
T→∞

1

T

T∑
t=ts

L(s(t)) = 〈L(s)〉As︸ ︷︷ ︸
ergodicity

(23) eq:error_whole_attractor_As

In (23), 〈L(s)〉As denotes the average loss by sampling trajectories over the
whole attractor As. This means that, if learning is realizable for a single
trajectory, then it will be realizable on the whole attractor of the source
system.

Note that the crucial part of this approach is the dependence on s only,
because only the source system attractor As is assumed to be ergodic.

4.4. Synchronization function

One would like to relax the definition of realizable learning (see Def. 4):
in fact, in realistic situations the error is not exactly zero. This is formalized
by assuming that L(y(t), ŷ(t)) = εt ≥ 0,∀t, so that:

ET =
1

T

T∑
t=ts

L(y(t), ŷ(t)) (24)

As proved in the previous section, if a mapping F does not exist, then
learning cannot be realizable according to Def. 4. But assuming GS to hold,
we can make use of the synchronization function φ and write:

1

T

T∑
t=ts

L(y(t), ŷ(t)) =
1

T

T∑
t=ts

L(k(s(t)),ψ(φ(s(t))))

=
1

T

T∑
t=ts

L(s(t))

(25)

17

where, again, L depends only on s(t). In order to make use of the ergodicity
of the source system, we need to be sure that the above limit exists. An
easy way for guaranteeing this consists of requiring the error to be bounded,
i.e., to have L(y(t), ŷ(t)) = εt < C, where C ≥ 0 is a constant. So, when
limT→∞ET exists and is finite, one can write:

E = lim
T→∞

ET = lim
T→∞

1

T

T∑
t=ts

L(s(t)) = 〈L(s(t))〉As (26)

The existence of the synchronization function guarantees that the error for
a single trajectory is the same as the error in the whole attractor of the source
system. This means that, by assuming GS, we can have some guarantees
on the performance of our model even when learning is not realizable, and
this is due to the fact that L depends only on the source system states s
when assuming GS. We emphasize that this argument applies not only to
future time of the the same trajectory, but also to any trajectory of the
source system (1) which starts from Bs. Practically speaking, this means
that if we have a trajectory of the source system starting at s′(0) ∈ Bs,
the readout that was previously trained will still work, because this new
trajectory will still approach the same attractor As and the reservoir will
approach the synchronization manifold. Note that if the GS is granted but
it is not unique (i.e, we do not have the ESP), the reservoir needs to be
initialized with the same initial condition, otherwise it may converge to a
different synchronization manifold, which would require a different readout;
which always exists as long as the new synchronization function is invertible.
The ESP ensures that the readout will be the same, as the synchronization
function will be unique. In fact, the definition of the synchronization function
in Def. 1 has other implications for the training mechanisms. Making use of
its smoothness along with the attractivity of the synchronization manifold,
one can account not only for the error in the approximation, but also for
the observational noise of the source system (see Appendix Appendix E for
details).

Finally, we stress that the existence of GS is a property which only in-
volves the source system (1) and its coupling with the reservoir (3) by means
of the measurements (2a), disregarding the particular task at hand. In fact,
in the discussion above, we showed how using the synchronization function φ
one can, in some sense, decouple the learning task and separate the problem
of finding a suitable readout from the problem of granting the existence of a

18

mapping from the source system states, s, to the reservoir states, r.

5. Experimental results
sec:experiments

5.1. The mutual false nearest neighbors

Identifying GS is hard due to the fact that the synchronization function
(10) in unknown and may take any form. For this reason, in [44] a method
to empirically assess the occurrence of GS from data was proposed under the
name of MFNN. It is based on the fact that, under reasonable smoothness
conditions for φ, 10 implies that two states that are close in state-space of
the response system correspond to two close states in the state-space of the
driving system. So, we are looking for a geometric connection between the
two systems which preserves the neighbor-structure in state space.

Let us assume that we sample trajectories from a dynamical system at a
fixed sampling rate, resulting in a series of discrete times {tn}. The resulting
measurements for the two systems will be {xn} and {yn}, for the drive
and the response respectively, where we used the notation xn := x(tn) and
yn := y(tn). For each point xn of the driving system, we seek the closest
point from its neighbors, which we will call time index nNND. Then, due to
(10), the point yn = φ(xn) will be close to ynNND

. If the distances between
these pairs of points in state-space of both the drive and response systems
are small, one can write:

yn − ynNND
= φ(xn)− φ(xnNND

) ≈Dφ(xn)(xn − xnNND
) (27) eqn:NND_approx

where Dφ(xn) is the Jacobian of φ evaluated at xn.
Now, we do a similar operation but in the response state space. We look

for the closer point to yn and we index it with nNNR. Again, due to (10), it
holds:

yn − ynNNR
= φ(xn)− φ(xnNNR

) ≈Dφ(xn)(xn − xnNNR
) (28) eqn:NNR_approx

So, due to (27) and (28) we have two different ways of evaluatingDφ(xn).
This leads us to the definition of the MFNN as the following ratio:

MFNN(n) :=
‖yn − ynNND

‖
‖xn − xnNND

‖
‖xn − xnNNR

‖
‖yn − ynNNR

‖
(29) eqn:MFNN

If the two systems are synchronized in a general sense, then MFNN(n) ≈
1. If the synchronization relation does not hold, then (29) should instead

19

be of the order of (size of the attractor squared)/(distance between nearest
neighbors squared) which is, in general, a large number.

Note that in this work we use the full knowledge of the source system to
measure the GS by means of MFNN. Generally, one would not have such a
knowledge: anyway the MFNN can be used also in this case, as showed in
the paper where it was proposed [44], making use of the embedding theorem.
For simplicity, we do not deal with this more complex case, since it would
not be relevant for the discussion.

Another possible way of assessing GS is to verify the complete synchro-
nization (see Appendix Appendix B) between multiple copies of the reservoir.
While such an approach might be hard to follow when considering physical
systems, it poses no problem and can be straightforwardly implemented in
the context we are interested in ([55]).

5.2. Reservoir computing networkssec:rcn
For simplicity, but without loss of generality, we will only deal with one-

dimensional inputs u(t) ∈ R. We use an RCN where the explicit form of the
reservoir equation (3) reads:

r(t+ τ) = tanh (Wr(t) +wu(t+ τ) + b) (30) eqn:RCN_state

W ∈ Rdr×dr is the connectivity matrix, which is an Erdos-Renyi matrix with
average degree 6; dr indicates the dimension of the reservoir. The non-null
elements are drawn from a uniform distribution taking values in the interval
(−1, 1). W is re-scaled so that its Spectral Radius (SR) equals the user-acro:SR
defined hyper-parameter ρ > 0. We emphasize that having a SR smaller than
1 is not a sufficient nor necessary condition for the ESP to hold [33]. The
elements w ∈ Rdr of the input vector are drawn from a uniform distribution
taking values in (−ω, ω); we refer to ω as the input scaling hyper-parameter.
b = [b, b, . . . , b] is a constant bias term, which is useful to control the non-
linearity of the system and to break the symmetry with respect to the origin
[11]. Here, tanh stands for the hyperbolic-tangent function applied element-
wise.

We use a linear readout, so that the predicted output is given by:

ŷ(t) = ψ(r(t)) ≡Woutr(t) (31) eqn:RCN_readout

where Wout is a dy × dr matrix, called readout matrix; dy is the output
dimension. We train the readout using ridge-regression with regularization
parameter λ, but more sophisticated, offline optimization procedures can be
designed as well [56, 52, 57].

20

5.3. Reservoir observersubsec:Reservoir_Observer

We test the hypothesis that learning in RC can happen only when the
network is synchronized with the source system (1). To do so, we adopt the
framework named reservoir observer [11], which consists of setting h(s) =
s1 = u and y = s. This means that the network is trained to reconstruct
the full state of the source system by seeing only one component of it. Note
that k in (2b) is the identity for this task, and (15) reduces to finding the
right inverse of the synchronization function (10). Practically, when using a
linear readout (as in fact we do here), one implicitly assumes that k ◦φ†(r)
in (15) can be expressed in linear form

φ†(r) = Woutr (32)

implying that
φ(s) = W ∗

outs (33)

where W ∗
out is the left pseudo-inverse of the readout matrix.

5.4. Resultssec:results
As for the source system (1), we use the Lorenz model (see Appendix

Appendix C for details). In the listening phase, we use t in the interval of
Ttrain = (−100, 0). We discarded the first 1/10 of the data points for training,
to account for transient effects in the synchronization process. The prediction
phase was carried out for values of t in Ttest = (0, 80). The integration step
was always set to τ = 0.05. An example of this task is provided in Fig. 3.

For each hyper-parameter configuration, we repeated the experiment 10
times, generating a different realization of the source system (i.e., starting
from distinct random initial conditions) and a different realization of the RCN
(30). For each run, the MFNN between the driving system state s(t) and the
reservoir r(t) was computed. As a performance measure for the prediction
accuracy, we used the RMSE computed on the y and the z coordinate of the
Lorenz system (since x is used as input). Following [44], we plot the inverse
of the MFNN so that the higher the value, the more synchronized the systems
are. Accordingly, we plot the inverse of the RMSE, which can be interpreted
as a form of accuracy. Unless differently stated, all hyperparameters are the
ones reported in Tab. 1. All the plots refer to the predicting phase.

In Fig. 4, we show the RMSE and the MFNN index when the SR of the
reservoir connectivity matrix varies in a suitable range. For smaller values
of SR the reservoir dynamics are really simple and close to linear (since

21

Table 1: Default hyper–parameters used in all experiments, unless differently stated.

ρ 1 Ttrain (−100, 0)
ω 0.1 Ttest (0, 80)
dr 300 τ 0.05
b 1 λ 10−6tab:default_params

tanh(x) ≈ x when x is small), so that the network it is not able to correctly
represent the Lorenz attractor in its state. We see that the synchronization is
weak and the error is large. As the SR approaches 1 we see that the reservoir
tends to become more synchronized with the source system state and this
reflects in a smaller error. When the SR started growing, the reservoirs
becomes more and more unstable and it gradually de-synchronizes with the
source system, such that the reconstruction of the coordinates becomes less
precise.

In Fig. 5 we repeated the experiment, but this time varying the input
scaling ω and holding ρ fixed to its default value. We see that the two
quantities still correlates, with both the accuracy and the synchronization
decreasing as the input scaling grows.

To assess the generality of our findings, we performed additional simula-
tions by changing the source system (1). To this end, we consider now the
Rössler system as a source system (see Appendix Appendix D for details).
Since the dynamics of the Rössler system are slower then the Lorenz ones,
we set the integration step to τ = 0.5, Ttrain = (−200, 0) and Ttext = (0, 160).
The remaining hyper-parameters are set as shown in Tab. 1. Again, we use
the x-coordinate as input and the tasks consists of learning how to repro-
duce y and z. The results are displayed in Fig. 6 and look similar to the one
obtained for the Lorenz system (Fig. 4).

To show that GS plays an important role not only in the observer task,
we also test our framework in a forecasting scenario. To this end, we use
the x-coordinate of the Lorenz system as the input (u(t) := x(t), but this
time the target y was chosen to be y(t) := u(t + 5τ). This means that the
RCN is required to correctly approximate the function g5(s), which is highly
nonlinear. The RMSE is computed between y(t) and the network output
ŷ(t). Notably, the MFNN here is almost identical to the one in Fig. 4: both
experiments use the same hyperparameters, the same source system and
construct u in the same way, so that the only difference (up to the particular
realization) is the task they are trained to solve, which affects the readout

22

20

15

10

5

0

5

10

15

x

20

10

0

10

20

y

20 10 0 10 20
t

5

10

15

20

25

30

35

40

45

z

True
True (unseen)
Prediction train
Prediction test

Figure 3: An example of the observer task using the Lorenz system. The top panel
show the measurement u (blue), which is always available. The middle and the bottom
panels represents the targets y: in the training phase they are available (blue) while in the
predicting phase (red) they cannot be accessed anymore. The predicted targets ŷ (black
dashed lines) are generated by means of the RCN described in Sec. 5.2. fig:observer_example

and not on the dynamics. As in the other cases, we notice that the MFNN
and the RMSE display a similar behavior.

These results confirm that the GS can be exploited to assess the quality
of the source system representation encoded in the reservoir states: in order
to correctly solve the task at hand, the reservoir and the the source system

23

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Spectral Radius

0

5

10

15

20

25

30

35

RM
SE

1

0.0

0.1

0.2

0.3

0.4

M
FN

N
1

Figure 4: Results for the reservoir observer when varying the SR of the connectivity
matrix, when using the Lorenz system as a source. Blue dots account for the RMSE (left
axis) while red triangles accounts for MFNN (right axis). fig:observer_lorenz

should be synchronized.

6. Conclusions
sec:conclusions

In this work, we laid down the groundwork for establishing and analyzing
working principles of RC within the theoretical framework of synchroniza-
tion between dynamical systems. First, we made systematic the equivalence
between the ESP and GS. Then, we showed that the presence of a syn-
chronization function consents to formally consider the reservoir states as an
unsupervised, high-dimensional representation of an unknown source system
that generates the observed data. We showed that the realizability of learn-
ing, defined as the possibility of perfectly solving the task, crucially depends

24

0.0 0.2 0.4 0.6 0.8 1.0
Input Scaling

0

5

10

15

20

RM
SE

1

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

M
FN

N
1

Figure 5: Results for the reservoir observer on Lorenz system when varying the input
scaling ω. when using the Lorenz system as a source. fig:Lorenz_omega

of the existence of a function connecting the reservoir states with the source
system states: the presence of GS implies the existence of a synchronization
function playing an analogous role, which is found in an unsupervised way
in RC. This formally proves that it is possible to solve the task at hand
by firstly creating an unsupervised representation of the source system (lis-
tening phase) and then using a suitable readout to correctly represent the
target (fitting phase), thus justifying the RC training principle in a formal
way. Moreover, the presence of such a synchronization function allows one
to make use of the ergodicity of the source system to grant some results on
the generalization error for a given task. Finally, we made use of an index
(MFNN) to quantify the degree of synchronization and experimentally val-
idate our claims. Results show that the more the reservoir is synchronized

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Spectral Radius

0

10

20

30

40

50

60

70

80

RM
SE

1

0.0

0.1

0.2

0.3

0.4

0.5

M
FN

N
1

Figure 6: Results for the reservoir observer when varying the SR, when using the Rössler
system as a source. Blue dots account for the RMSE (left axis) while red triangles accounts
for MFNN (right axis). fig:observer_rossler

with the source, the better the system approximates the target, hence stress-
ing that synchronization is paramount and plays a fundamental role within
the RC framework.

Declaration of Competing Interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

26

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Spectral Radius

0.5

1.0

1.5

2.0

RM
SE

1

0.0

0.1

0.2

0.3

0.4

M
FN

N
1

Figure 7: Results for the forecasting task on Lorenz system when varying the SR. fig:Prediction

Acknowledgments

LL gratefully acknowledges partial support of the Canada Research Chairs
program. PV would like to thank Andrea Ceni and Daniele Zambon for the
insightful discussions about some mathematical details of this work.

References

liu2019deep [1] G.-H. Liu, E. A. Theodorou, Deep learning theory review: An op-
timal control and dynamical systems perspective, arXiv preprint
arXiv:1908.10920 (2019).

bianchi2016investigating [2] F. M. Bianchi, L. Livi, C. Alippi, Investigating echo state networks
dynamics by means of recurrence analysis, IEEE Transactions on Neu-

27

ral Networks and Learning Systems 29 (2018) 427–439. doi:10.1109/
TNNLS.2016.2630802.

sussillo2009generating [3] D. Sussillo, L. F. Abbott, Generating coherent patterns of activity from
chaotic neural networks, Neuron 63 (2009) 544–557.

bengio1994learning [4] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies
with gradient descent is difficult, IEEE Transactions on Neural Networks
5 (1994) 157–166.

bouvrie2017kernel [5] J. Bouvrie, B. Hamzi, Kernel methods for the approximation of non-
linear systems, SIAM Journal on Control and Optimization 55 (2017)
2460–2492. doi:10.1137/14096815X.

qi2020using [6] D. Qi, A. J. Majda, Using machine learning to predict extreme events
in complex systems, Proceedings of the National Academy of Sciences
117 (2020) 52–59.

gilpin2020deep [7] W. Gilpin, Deep learning of dynamical attractors from time series mea-
surements, arXiv preprint arXiv:2002.05909 (2020).

tu2013dynamic [8] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, J. N.
Kutz, On dynamic mode decomposition: Theory and applications, arXiv
preprint arXiv:1312.0041 (2013).

berry2020bridging [9] T. Berry, D. Giannakis, J. Harlim, Bridging data science and dynamical
systems theory, arXiv preprint arXiv:2002.07928 (2020).

verstraeten2007experimental [10] D. Verstraeten, B. Schrauwen, M. d’Haene, D. Stroobandt, An experi-
mental unification of reservoir computing methods, Neural Networks 20
(2007) 391–403.

lu2017reservoir [11] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, E. Ott, Reser-
voir observers: Model-free inference of unmeasured variables in chaotic
systems, Chaos: An Interdisciplinary Journal of Nonlinear Science 27
(2017) 041102.

lu2018attractor [12] Z. Lu, B. R. Hunt, E. Ott, Attractor reconstruction by machine learn-
ing, Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (2018)
061104.

28

http://dx.doi.org/10.1109/TNNLS.2016.2630802
http://dx.doi.org/10.1109/TNNLS.2016.2630802
http://dx.doi.org/10.1137/14096815X

chattopadhyay2020data [13] A. Chattopadhyay, P. Hassanzadeh, D. Subramanian, Data-driven pre-
dictions of a multiscale lorenz 96 chaotic system using machine-learning
methods: reservoir computing, artificial neural network, and long short-
term memory network, Nonlinear Processes in Geophysics 27 (2020)
373–389.

vlachas2020backpropagation [14] P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott,
P. Koumoutsakos, Backpropagation algorithms and reservoir computing
in recurrent neural networks for the forecasting of complex spatiotem-
poral dynamics, Neural Networks (2020).

bompas2020accuracy [15] S. Bompas, B. Georgeot, D. Guéry-Odelin, Accuracy of neural networks
for the simulation of chaotic dynamics: precision of training data vs
precision of the algorithm, arXiv preprint arXiv:2008.04222 (2020).

jaeger2001echo [16] H. Jaeger, The “echo state” approach to analysing and training recur-
rent neural networks-with an erratum note, Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report 148 (2001) 13.

maass2002real [17] W. Maass, T. Natschläger, H. Markram, Real-time computing with-
out stable states: A new framework for neural computation based on
perturbations, Neural Computation 14 (2002) 2531–2560.

tino2001predicting [18] P. Tiňo, G. Dorffner, Predicting the future of discrete sequences from
fractal representations of the past, Machine Learning 45 (2001) 187–217.

grigoryeva2018echo [19] L. Grigoryeva, J.-P. Ortega, Echo state networks are universal, Neural
Networks 108 (2018) 495–508.

hart2019embedding [20] A. Hart, J. Hook, J. Dawes, Embedding and approximation theorems
for echo state networks, Neural Networks 128 (2020) 234–247. doi:10.
1016/j.neunet.2020.05.013.

hart2020echo [21] A. G. Hart, J. L. Hook, J. H. Dawes, Echo state networks trained
by tikhonov least squares are l2(µ) approximators of ergodic dynamical
systems, arXiv preprint arXiv:2005.06967 (2020).

gonon2020memory [22] L. Gonon, L. Grigoryeva, J.-P. Ortega, Memory and forecasting capac-
ities of nonlinear recurrent networks, Physica D: Nonlinear Phenomena
414 (2020) 132721. doi:10.1016/j.physd.2020.132721.

29

http://dx.doi.org/10.1016/j.neunet.2020.05.013
http://dx.doi.org/10.1016/j.neunet.2020.05.013
http://dx.doi.org/10.1016/j.physd.2020.132721

massar2013mean [23] M. Massar, S. Massar, Mean-field theory of echo state networks, Phys-
ical Review E 87 (2013) 042809.

mastrogiuseppe2019geometrical [24] F. Mastrogiuseppe, S. Ostojic, A geometrical analysis of global stability
in trained feedback networks, Neural Computation 31 (2019) 1139–1182.

rivkind2017local [25] A. Rivkind, O. Barak, Local dynamics in trained recurrent neural net-
works, Physical Review Letters 118 (2017) 258101.

verstraeten2010memory [26] D. Verstraeten, J. Dambre, X. Dutoit, B. Schrauwen, Memory versus
non-linearity in reservoirs, in: The 2010 international joint conference
on neural networks (IJCNN), IEEE, 2010, pp. 1–8.

goudarzi2016memory [27] A. Goudarzi, S. Marzen, P. Banda, G. Feldman, C. Teuscher, D. Ste-
fanovic, Memory and information processing in recurrent neural net-
works, arXiv preprint arXiv:1604.06929 (2016).

marzen2017difference [28] S. Marzen, Difference between memory and prediction in linear recurrent
networks, Physical Review E 96 (2017) 032308. doi:10.1103/PhysRevE.
96.032308.

tino2020dynamical [29] P. Tiňo, Dynamical systems as temporal feature spaces., Journal of
Machine Learning Research 21 (2020) 1–42.

verzelli2020input [30] P. Verzelli, C. Alippi, L. Livi, P. Tino, Input representation in recurrent
neural networks dynamics, arXiv preprint arXiv:2003.10585 (2020).

ganguli2008memory [31] S. Ganguli, D. Huh, H. Sompolinsky, Memory traces in dynamical sys-
tems, Proceedings of the National Academy of Sciences 105 (2008)
18970–18975. doi:10.1073/pnas.0804451105.

TANAKA2019100 [32] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, A. Hirose, Recent advances in phys-
ical reservoir computing: A review, Neural Networks 115 (2019) 100 –
123. doi:10.1016/j.neunet.2019.03.005.

yildiz2012re [33] I. B. Yildiz, H. Jaeger, S. J. Kiebel, Re-visiting the echo state property,
Neural Networks 35 (2012) 1–9.

zhang2011nonlinear [34] B. Zhang, D. J. Miller, Y. Wang, Nonlinear system modeling with
random matrices: echo state networks revisited, IEEE Transactions on
Neural Networks and Learning Systems 23 (2011) 175–182.

30

http://dx.doi.org/10.1103/PhysRevE.96.032308
http://dx.doi.org/10.1103/PhysRevE.96.032308
http://dx.doi.org/10.1073/pnas.0804451105
http://dx.doi.org/10.1016/j.neunet.2019.03.005

basterrech2017empirical [35] S. Basterrech, Empirical analysis of the necessary and sufficient condi-
tions of the echo state property, in: 2017 International Joint Conference
on Neural Networks (IJCNN), IEEE, 2017, pp. 888–896.

manjunath2013echo [36] G. Manjunath, H. Jaeger, Echo state property linked to an input: Ex-
ploring a fundamental characteristic of recurrent neural networks, Neu-
ral Computation 25 (2013) 671–696.

caluwaerts2013spectral [37] K. Caluwaerts, F. Wyffels, S. Dieleman, B. Schrauwen, The spectral
radius remains a valid indicator of the echo state property for large
reservoirs, in: The 2013 International Joint Conference on Neural Net-
works (IJCNN), IEEE, 2013, pp. 1–6.

ceni2020nESP [38] A. Ceni, P. Ashwin, L. Livi, C. Postlethwaite, The echo index and
multistability in input-driven recurrent neural networks, Physica D 412
(2020). doi:10.1016/j.physd.2020.132609.

lu2020invertible [39] Z. Lu, D. S. Bassett, Invertible generalized synchronization: A putative
mechanism for implicit learning in neural systems, Chaos: An Interdis-
ciplinary Journal of Nonlinear Science 30 (2020) 063133.

weng2019synchronization [40] T. Weng, H. Yang, C. Gu, J. Zhang, M. Small, Synchronization of
chaotic systems and their machine-learning models, Physical Review E
99 (2019) 042203.

lymburn2019reservoir [41] T. Lymburn, D. M. Walker, M. Small, T. Jüngling, The reservoir’s
perspective on generalized synchronization, Chaos: An Interdisciplinary
Journal of Nonlinear Science 29 (2019) 093133.

grigoryeva2020chaos [42] L. Grigoryeva, A. Hart, J.-P. Ortega, Chaos on compact mani-
folds: Differentiable synchronizations beyond takens, arXiv preprint
arXiv:2010.03218 (2020).

afraimovich1986stochastic [43] V. Afraimovich, N. Verichev, M. I. Rabinovich, Stochastic synchroniza-
tion of oscillation in dissipative systems, Radiophysics and Quantum
Electronics 29 (1986) 795–803.

rulkov1995generalized [44] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, H. D. Abarbanel, Gener-
alized synchronization of chaos in directionally coupled chaotic systems,
Physical Review E 51 (1995) 980.

31

http://dx.doi.org/10.1016/j.physd.2020.132609

pecora1997fundamentals [45] L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, J. F. Heagy,
Fundamentals of synchronization in chaotic systems, concepts, and ap-
plications, Chaos: An Interdisciplinary Journal of Nonlinear Science 7
(1997) 520–543.

parlitz2012detecting [46] U. Parlitz, Detecting generalized synchronization, Nonlinear Theory
and Its Applications, IEICE 3 (2012) 113–127.

boccaletti2002synchronization [47] S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, C. Zhou, The syn-
chronization of chaotic systems, Physics Reports 366 (2002) 1–101.

manjunath2012theory [48] G. Manjunath, P. Tino, H. Jaeger, Theory of input driven dynamical
systems, dice. ucl. ac. be, number April (2012) 25–27.

pyragas1996weak [49] K. Pyragas, Weak and strong synchronization of chaos, Physical Review
E 54 (1996) R4508.

takens1981detecting [50] F. Takens, Detecting strange attractors in turbulence, in: Dynamical
Systems and Turbulence, Springer, 1981, pp. 366–381.

shawetaylor+cristianini2004 [51] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,
Cambridge University Press, Cambridge, UK, 2004.

shi2007support [52] Z. Shi, M. Han, Support vector echo-state machine for chaotic time-
series prediction, IEEE Transactions on Neural Networks 18 (2007)
359–372.

shalev2014understanding [53] S. Shalev-Shwartz, S. Ben-David, Understanding machine learning:
From theory to algorithms, Cambridge university press, 2014.

birkhoff1931proof [54] G. D. Birkhoff, Proof of the ergodic theorem, Proceedings of the Na-
tional Academy of Sciences 17 (1931) 656–660.

platt2021forecasting [55] J. A. Platt, A. S. Wong, R. Clark, S. G. Penny, H. D. Abarbanel, Fore-
casting using reservoir computing: The role of generalized synchroniza-
tion, arXiv preprint arXiv:2103.00362 (2021).

gallicchio2017deep [56] C. Gallicchio, A. Micheli, L. Pedrelli, Deep reservoir computing: A
critical experimental analysis, Neurocomputing 268 (2017) 87–99.

32

lokse2017training [57] S. Løkse, F. M. Bianchi, R. Jenssen, Training echo state networks with
regularization through dimensionality reduction, Cognitive Computa-
tion 9 (2017) 364–378.

ott2002chaos [58] E. Ott, Chaos in dynamical systems, Cambridge university press, 2002.

pecora1990synchronization [59] L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Physical
Review Letters 64 (1990) 821.

kocarev1996generalized [60] L. Kocarev, U. Parlitz, Generalized synchronization, predictability, and
equivalence of unidirectionally coupled dynamical systems, Physical Re-
view Letters 76 (1996) 1816.

lorenz1963deterministic [61] E. N. Lorenz, Deterministic nonperiodic flow, Journal of the Atmo-
spheric Sciences 20 (1963) 130–141.

rossler1976equation [62] O. E. Rössler, An equation for continuous chaos, Physics Letters A 57
(1976) 397–398.

Appendix A. Synchronization of identical systems
sec:identical_sync

Following [58], we start by recalling the concept of sensitive dependence
on initial conditions. Consider two identical d-dimensional chaotic systems,
say a and b, described by:eqn:system

xa(t+ τ) = F (xa(t)) (A.1a)

xb(t+ τ) = F (xb(t)) (A.1b)

where the function F is the same for both systems. If the initial condi-
tions differ even slightly, then the chaotic nature of the system will lead to
exponential divergence: the two systems posses the same attractor but their
motion will be uncorrelated over time.

In this context, an instance of chaos synchronization consists of designing
a coupling between the two systems such that the two trajectories, xa(t) and
xb(t), become identical asymptotically with time. That is, if xa(t) ≈ xb(t)
then ‖xa(t)−xb(t)‖ → 0 as t→∞. A possible coupling for (A.1) might be:

eqn:coupling

xa(t+ τ) = F (xa(t)) + ca (xa(t)− xb(t)) (A.2a)

xb(t+ τ) = F (xb(t)) + cb (xb(t)− xa(t)) (A.2b)

33

The ca = [ca,1, ca,2, . . . ca,d] and cb = [cb,1, cb,2, . . . cb,d] are the coupling
constants. If all the ca’s are null, we say that there is one-way coupling from
a to b, since the state of a influences b but b does no influence a. If ca,i 6= 0
and cb,i 6= 0 for at least one i, we say that there is a two-way coupling.

System in (A.2) is, as a whole, a 2d-dimensional dynamical system re-
sulting from the coupling of the two original systems. Note that if synchro-
nization is achieved, xa(t) = xb(t): this means that the coupling terms are
null.

In the 2d-dimensional state-space of system (A.2), the synchronized state
xa = xb represents an d-dimensional invariant manifold. On this manifold,
(A.2) reduces to (A.1).

Appendix B. Complete synchronization and asymptotic stability
sec:complet_synch

In the framework introduced for system 5, we now introduce a driven
replica subsystem:

r̃(t+ τ) = f(r̃(t),h(s(t+ τ))) (B.1) eqn:driven_replica

Note that f is the same as in (5b). We then take the sequence of states s(t)
from (5a) and use h(s) to feed the replica subsystem (B.1). The complete
synchronization [59] between the response (5b) and its replica (B.1) is defined
as the identity of the trajectories of r and r̃. In more formal terms, we are
requiring the asymptotic stability of the response with respect to the replica
subsystem [47, Sec. 3.6].

def:asymptotic_stability Definition 5 (Asymptotic stability). A dynamical system is said to be asymp-
totically stable if, for any two copies r and r̃ of the system driven by the same
input u(t) and starting from different initial conditions in Br, it holds that

lim
t→∞
‖r(t,u(t+ τ))− r̃(t,u(t+ τ))‖ = 0 (B.2) eqn:asymp_stability_synch

In our case, u(t) = h(s(t)). The state of the full dynamical system
is now constituted by (5) and (B.1), and thus it is ds + 2dr dimensional.
The synchronized state r̂ = r represents an (ds + dr)-dimensional manifold
embedded in the state-space of the full system.

In [60] the authors proved a necessary and sufficient condition for the GS
between the driver s (through u = h(s)) and the response r to hold: GS
occurs if and only if, for all initial conditions in B, the response system is
asymptotically stable.

34

Appendix C. Lorenz System
sec:lorenz

The Lorenz system [61] is a 3-dimensional dynamical system characteriz-
ing a simple model for atmospheric convection. Its equations read:

ẋ = σ(y − x)

ẏ = (ρ− z)x− y
ż = xy − βz

(C.1)

where x = x(t), y = y(t), z = z(t) are the variables, σ, ρ and β are the
model parameters and the dot denotes the first-order derivative with respect
to time t. In this work, we choose the commonly used values σ = 10, ρ = 28
and β = 8/3, for which the system is known to be a chaotic one and to have
a strange attractor.

Appendix D. Rössler System
sec:roessler

The Rössler system [62] is a 3-dimensional chaotic dynamical system de-
fined as follows:

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c)
(D.1)

where x = x(t), y = y(t), z = z(t) are the variables and a, b, and c are the
model parameters, which in our paper are set to a = 0.1, b = 0.1, and c = 14.
The dot denotes the first-order derivative with respect to time t.

Appendix E. Measurement noise
sec:noise

In many real situations the input is corrupted by some noise, so that
instead of reading just u(t) one actually reads u(t) + ε(t), ε(t) being i.i.d.
noise. This lead to the following state-update for the reservoir:

r(t+ 1) = f(r(t),u(t) + ε(t)) (E.1)

≈ f(r(t),u(t)) + f ′(r(t),u(t))ε(t)

This will affect the reservoir dynamics in general, but when the noise is
small we can still hope that the trajectory will not be too far from the one

35

generated without noise. That is, we assume it is possible to write each point
as r(t) +η(t). This will be in fact guaranteed by the GS, which requires the
synchronization manifold not only to exist, but also to be attractive [60].
Note that η(t) is not i.i.d. anymore.

The synchronization problem (w.r.t. to the true system state) becomes:

s = φ(r + η) (E.2)

We can make use of the smoothness of φ to write a first-order approxi-
mation of the source system state as follows:

s ≈ φ(r) + φ′(r)η (E.3)

Such an approximation allows us to introduce a measure of synchroniza-
tion error due to noise, which reads:

En := ‖s− φ(r)‖ ≈ ‖φ′η‖ ≤ ‖φ′‖‖η‖ (E.4)

For the observer task (see 5.3), in the common case of a linear readout,
φ′ is simply the pseudo-inverse of the readout matrix W ∗

out, whose singular
values are the reciprocal of the singular values of Wout. This implies the
following bound on the synchronization error due to noise,

En ≤ ‖W ∗
out‖‖η‖ =

‖η‖
mini σi(Wout)

(E.5)

where σi(Wout) denote the non-null singular values of Wout.

36

	1 Introduction
	2 Reservoir computing
	2.1 Task description
	2.2 Training phase
	2.3 Predicting phase

	3 Synchronization and echo-state property
	3.1 Drive-response systems
	3.2 Generalized Synchronization
	3.3 Echo State Property

	4 Generalized synchronization and learning
	4.1 Unsupervised system reconstruction during the listening phase
	4.2 Learning realizability
	4.3 Error on the whole attractor
	4.4 Synchronization function

	5 Experimental results
	5.1 The mutual false nearest neighbors
	5.2 Reservoir computing networks
	5.3 Reservoir observer
	5.4 Results

	6 Conclusions
	Appendix A Synchronization of identical systems
	Appendix B Complete synchronization and asymptotic stability
	Appendix C Lorenz System
	Appendix D Rössler System
	Appendix E Measurement noise

