3,245 research outputs found

    Recommending with an Agenda: Active Learning of Private Attributes using Matrix Factorization

    Full text link
    Recommender systems leverage user demographic information, such as age, gender, etc., to personalize recommendations and better place their targeted ads. Oftentimes, users do not volunteer this information due to privacy concerns, or due to a lack of initiative in filling out their online profiles. We illustrate a new threat in which a recommender learns private attributes of users who do not voluntarily disclose them. We design both passive and active attacks that solicit ratings for strategically selected items, and could thus be used by a recommender system to pursue this hidden agenda. Our methods are based on a novel usage of Bayesian matrix factorization in an active learning setting. Evaluations on multiple datasets illustrate that such attacks are indeed feasible and use significantly fewer rated items than static inference methods. Importantly, they succeed without sacrificing the quality of recommendations to users.Comment: This is the extended version of a paper that appeared in ACM RecSys 201

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Classifier selection with permutation tests

    Get PDF
    This work presents a content-based recommender system for machine learning classifier algorithms. Given a new data set, a recommendation of what classifier is likely to perform best is made based on classifier performance over similar known data sets. This similarity is measured according to a data set characterization that includes several state-of-the-art metrics taking into account physical structure, statistics, and information theory. A novelty with respect to prior work is the use of a robust approach based on permutation tests to directly assess whether a given learning algorithm is able to exploit the attributes in a data set to predict class labels, and compare it to the more commonly used F-score metric for evaluating classifier performance. To evaluate our approach, we have conducted an extensive experimentation including 8 of the main machine learning classification methods with varying configurations and 65 binary data sets, leading to over 2331 experiments. Our results show that using the information from the permutation test clearly improves the quality of the recommendations.Peer ReviewedPostprint (author's final draft

    Privacy and Fairness in Recommender Systems via Adversarial Training of User Representations

    Full text link
    Latent factor models for recommender systems represent users and items as low dimensional vectors. Privacy risks of such systems have previously been studied mostly in the context of recovery of personal information in the form of usage records from the training data. However, the user representations themselves may be used together with external data to recover private user information such as gender and age. In this paper we show that user vectors calculated by a common recommender system can be exploited in this way. We propose the privacy-adversarial framework to eliminate such leakage of private information, and study the trade-off between recommender performance and leakage both theoretically and empirically using a benchmark dataset. An advantage of the proposed method is that it also helps guarantee fairness of results, since all implicit knowledge of a set of attributes is scrubbed from the representations used by the model, and thus can't enter into the decision making. We discuss further applications of this method towards the generation of deeper and more insightful recommendations.Comment: International Conference on Pattern Recognition and Method

    Estimating Optimal Weights in Hybrid Recommender Systems

    Get PDF
    corecore