42,541 research outputs found

    Unimodal Thompson Sampling for Graph-Structured Arms

    Full text link
    We study, to the best of our knowledge, the first Bayesian algorithm for unimodal Multi-Armed Bandit (MAB) problems with graph structure. In this setting, each arm corresponds to a node of a graph and each edge provides a relationship, unknown to the learner, between two nodes in terms of expected reward. Furthermore, for any node of the graph there is a path leading to the unique node providing the maximum expected reward, along which the expected reward is monotonically increasing. Previous results on this setting describe the behavior of frequentist MAB algorithms. In our paper, we design a Thompson Sampling-based algorithm whose asymptotic pseudo-regret matches the lower bound for the considered setting. We show that -as it happens in a wide number of scenarios- Bayesian MAB algorithms dramatically outperform frequentist ones. In particular, we provide a thorough experimental evaluation of the performance of our and state-of-the-art algorithms as the properties of the graph vary

    Evaluating Overfit and Underfit in Models of Network Community Structure

    Full text link
    A common data mining task on networks is community detection, which seeks an unsupervised decomposition of a network into structural groups based on statistical regularities in the network's connectivity. Although many methods exist, the No Free Lunch theorem for community detection implies that each makes some kind of tradeoff, and no algorithm can be optimal on all inputs. Thus, different algorithms will over or underfit on different inputs, finding more, fewer, or just different communities than is optimal, and evaluation methods that use a metadata partition as a ground truth will produce misleading conclusions about general accuracy. Here, we present a broad evaluation of over and underfitting in community detection, comparing the behavior of 16 state-of-the-art community detection algorithms on a novel and structurally diverse corpus of 406 real-world networks. We find that (i) algorithms vary widely both in the number of communities they find and in their corresponding composition, given the same input, (ii) algorithms can be clustered into distinct high-level groups based on similarities of their outputs on real-world networks, and (iii) these differences induce wide variation in accuracy on link prediction and link description tasks. We introduce a new diagnostic for evaluating overfitting and underfitting in practice, and use it to roughly divide community detection methods into general and specialized learning algorithms. Across methods and inputs, Bayesian techniques based on the stochastic block model and a minimum description length approach to regularization represent the best general learning approach, but can be outperformed under specific circumstances. These results introduce both a theoretically principled approach to evaluate over and underfitting in models of network community structure and a realistic benchmark by which new methods may be evaluated and compared.Comment: 22 pages, 13 figures, 3 table
    • …
    corecore