24,101 research outputs found

    Objective Classes for Micro-Facial Expression Recognition

    Full text link
    Micro-expressions are brief spontaneous facial expressions that appear on a face when a person conceals an emotion, making them different to normal facial expressions in subtlety and duration. Currently, emotion classes within the CASME II dataset are based on Action Units and self-reports, creating conflicts during machine learning training. We will show that classifying expressions using Action Units, instead of predicted emotion, removes the potential bias of human reporting. The proposed classes are tested using LBP-TOP, HOOF and HOG 3D feature descriptors. The experiments are evaluated on two benchmark FACS coded datasets: CASME II and SAMM. The best result achieves 86.35\% accuracy when classifying the proposed 5 classes on CASME II using HOG 3D, outperforming the result of the state-of-the-art 5-class emotional-based classification in CASME II. Results indicate that classification based on Action Units provides an objective method to improve micro-expression recognition.Comment: 11 pages, 4 figures and 5 tables. This paper will be submitted for journal revie

    The Many Moods of Emotion

    Full text link
    This paper presents a novel approach to the facial expression generation problem. Building upon the assumption of the psychological community that emotion is intrinsically continuous, we first design our own continuous emotion representation with a 3-dimensional latent space issued from a neural network trained on discrete emotion classification. The so-obtained representation can be used to annotate large in the wild datasets and later used to trained a Generative Adversarial Network. We first show that our model is able to map back to discrete emotion classes with a objectively and subjectively better quality of the images than usual discrete approaches. But also that we are able to pave the larger space of possible facial expressions, generating the many moods of emotion. Moreover, two axis in this space may be found to generate similar expression changes as in traditional continuous representations such as arousal-valence. Finally we show from visual interpretation, that the third remaining dimension is highly related to the well-known dominance dimension from psychology

    CAKE: Compact and Accurate K-dimensional representation of Emotion

    Get PDF
    Numerous models describing the human emotional states have been built by the psychology community. Alongside, Deep Neural Networks (DNN) are reaching excellent performances and are becoming interesting features extraction tools in many computer vision tasks.Inspired by works from the psychology community, we first study the link between the compact two-dimensional representation of the emotion known as arousal-valence, and discrete emotion classes (e.g. anger, happiness, sadness, etc.) used in the computer vision community. It enables to assess the benefits -- in terms of discrete emotion inference -- of adding an extra dimension to arousal-valence (usually named dominance). Building on these observations, we propose CAKE, a 3-dimensional representation of emotion learned in a multi-domain fashion, achieving accurate emotion recognition on several public datasets. Moreover, we visualize how emotions boundaries are organized inside DNN representations and show that DNNs are implicitly learning arousal-valence-like descriptions of emotions. Finally, we use the CAKE representation to compare the quality of the annotations of different public datasets

    Ensemble of Hankel Matrices for Face Emotion Recognition

    Full text link
    In this paper, a face emotion is considered as the result of the composition of multiple concurrent signals, each corresponding to the movements of a specific facial muscle. These concurrent signals are represented by means of a set of multi-scale appearance features that might be correlated with one or more concurrent signals. The extraction of these appearance features from a sequence of face images yields to a set of time series. This paper proposes to use the dynamics regulating each appearance feature time series to recognize among different face emotions. To this purpose, an ensemble of Hankel matrices corresponding to the extracted time series is used for emotion classification within a framework that combines nearest neighbor and a majority vote schema. Experimental results on a public available dataset shows that the adopted representation is promising and yields state-of-the-art accuracy in emotion classification.Comment: Paper to appear in Proc. of ICIAP 2015. arXiv admin note: text overlap with arXiv:1506.0500
    • …
    corecore