59,800 research outputs found

    Rule-based Emotion Detection on Social Media: Putting Tweets on Plutchik's Wheel

    Full text link
    We study sentiment analysis beyond the typical granularity of polarity and instead use Plutchik's wheel of emotions model. We introduce RBEM-Emo as an extension to the Rule-Based Emission Model algorithm to deduce such emotions from human-written messages. We evaluate our approach on two different datasets and compare its performance with the current state-of-the-art techniques for emotion detection, including a recursive auto-encoder. The results of the experimental study suggest that RBEM-Emo is a promising approach advancing the current state-of-the-art in emotion detection

    Affective Man-Machine Interface: Unveiling human emotions through biosignals

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals

    Hidden topicā€“emotion transition model for multi-level social emotion detection

    Get PDF
    With the fast development of online social platforms, social emotion detection, focusing on predicting readersā€™ emotions evoked by news articles, has been intensively investigated. Considering emotions as latent variables, various probabilistic graphical models have been proposed for emotion detection. However, the bag-of-words assumption prohibits those models from capturing the inter-relations between sentences in a document. Moreover, existing models can only detect emotions at either the document-level or the sentence-level. In this paper, we propose an effective Bayesian model, called hidden Topicā€“Emotion Transition model, by assuming that words in the same sentence share the same emotion and topic and modeling the emotions and topics in successive sentences as a Markov chain. By doing so, not only the document-level emotion but also the sentence-level emotion can be detected simultaneously. Experimental results on the two public corpora show that the proposed model outperforms state-of-the-art approaches on both document-level and sentence-level emotion detection

    Learning spontaneity to improve emotion recognition in speech

    Get PDF
    We investigate the effect and usefulness of spontaneity (i.e. whether a given speech is spontaneous or not) in speech in the context of emotion recognition. We hypothesize that emotional content in speech is interrelated with its spontaneity, and use spontaneity classification as an auxiliary task to the problem of emotion recognition. We propose two supervised learning settings that utilize spontaneity to improve speech emotion recognition: a hierarchical model that performs spontaneity detection before performing emotion recognition, and a multitask learning model that jointly learns to recognize both spontaneity and emotion. Through various experiments on the well known IEMOCAP database, we show that by using spontaneity detection as an additional task, significant improvement can be achieved over emotion recognition systems that are unaware of spontaneity. We achieve state-of-the-art emotion recognition accuracy (4-class, 69.1%) on the IEMOCAP database outperforming several relevant and competitive baselines

    Relevant Emotion Ranking from Text Constraint with Emotion Relationships

    Get PDF
    Text might contain or invoke multiple emotions with varying intensities. As such, emotion detection, to predict multiple emotions associated with a given text, can be cast into a multi-label classification problem. We would like to go one step further so that a ranked list of relevant emotions are generated where top ranked emotions are more intensely associated with text compared to lower ranked emotions, whereas the rankings of irrelevant emotions are not important. A novel framework of relevant emotion ranking is proposed to tackle the problem. In the framework, the objective loss function is designed elaborately so that both emotion prediction and rankings of only relevant emotions can be achieved. Moreover, we observe that some emotions cooccur more often while other emotions rarely co-exist. Such information is incorporated into the framework as constraints to improve the accuracy of emotion detection. Experimental results on two real-world corpora show that the proposed framework can effectively deal with emotion detection and performs remarkably better than the state-of-the-art emotion detection approaches and multi-label learning methods
    • ā€¦
    corecore