11,148 research outputs found

    An efficient deep learning technique for facial emotion recognition

    Get PDF
    Emotion recognition from facial images is considered as a challenging task due to the varying nature of facial expressions. The prior studies on emotion classification from facial images using deep learning models have focused on emotion recognition from facial images but face the issue of performance degradation due to poor selection of layers in the convolutional neural network model.To address this issue, we propose an efficient deep learning technique using a convolutional neural network model for classifying emotions from facial images and detecting age and gender from the facial expressions efficiently. Experimental results show that the proposed model outperformed baseline works by achieving an accuracy of 95.65% for emotion recognition, 98.5% for age recognition, and 99.14% for gender recognition

    Improving Emotion Recognition Systems by Exploiting the Spatial Information of EEG Sensors

    Get PDF
    Electroencephalography (EEG)-based emotion recognition is gaining increasing importance due to its potential applications in various scientific fields, ranging from psychophysiology to neuromarketing. A number of approaches have been proposed that use machine learning (ML) technology to achieve high recognition performance, which relies on engineering features from brain activity dynamics. Since ML performance can be improved by utilizing 2D feature representation that exploits the spatial relationships among the features, here we propose a novel input representation that involves re-arranging EEG features as an image that reflects the top view of the subject’s scalp. This approach enables emotion recognition through image-based ML methods such as pre-trained deep neural networks or "trained-from-scratch" convolutional neural networks. We have employed both of these techniques in our study to demonstrate the effectiveness of our proposed input representation. We also compare the recognition performance of these methods against state-of-the-art tabular data analysis approaches, which do not utilize the spatial relationships between the sensors. We test our proposed approach using two publicly available benchmark datasets for EEG-based emotion recognition tasks, namely DEAP and MAHNOB-HCI. Our results show that the "trained-from-scratch" convolutional neural network outperforms the best approaches in the literature, achieving 97.8% and 98.3% accuracy in valence and arousal classification on MAHNOB-HCI, and 91% and 90.4% on DEAP, respectively

    A novel driver emotion recognition system based on deep ensemble classification

    Get PDF
    Driver emotion classification is an important topic that can raise awareness of driving habits because many drivers are overconfident and unaware of their bad driving habits. Drivers will acquire insight into their poor driving behaviors and be better able to avoid future accidents if their behavior is automatically identified. In this paper, we use different models such as convolutional neural networks, recurrent neural networks, and multi-layer perceptron classification models to construct an ensemble convolutional neural network-based enhanced driver facial expression recognition model. First, the faces of the drivers are discovered using the faster region-based convolutional neural network (R-CNN) model, which can recognize faces in real-time and offline video reliably and effectively. The feature-fusing technique is utilized to integrate the features extracted from three CNN models, and the fused features are then used to train the suggested ensemble classification model. To increase the accuracy and efficiency of face detection, a new convolutional neural network block (InceptionV3) replaces the improved Faster R-CNN feature-learning block. To evaluate the proposed face detection and driver facial expression recognition (DFER) datasets, we achieved an accuracy of 98.01%, 99.53%, 99.27%, 96.81%, and 99.90% on the JAFFE, CK+, FER-2013, AffectNet, and custom-developed datasets, respectively. The custom-developed dataset has been recorded as the best among all under the simulation environment

    Speech emotion recognition using 2D-convolutional neural network

    Get PDF
    This research proposes a speech emotion recognition model to predict human emotions using the convolutional neural network (CNN) by learning segmented audio of specific emotions. Speech emotion recognition utilizes the extracted features of audio waves to learn speech emotion characteristics; one of them is mel frequency cepstral coefficient (MFCC). Dataset takes a vital role to obtain valuable results in model learning. Hence this research provides the leverage of dataset combination implementation. The model learns a combined dataset with audio segmentation and zero padding using 2D-CNN. Audio segmentation and zero padding equalize the extracted audio features to learn the characteristics. The model results in 83.69% accuracy to predict seven emotions: neutral, happy, sad, angry, fear, disgust, and surprise from the combined dataset with the segmentation of the audio files
    • …
    corecore