2,553 research outputs found

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Social relationship analysis using state-of-the-art embeddings.

    Get PDF
    Detection of human relationships from their interactions on social media is a challenging problem with a wide range of applications in different areas, like targeted marketing, cyber-crime, fraud, defense, planning, and human resource, to name a few. All previous work in this area has only dealt with the most basic types of relationships. The proposed approach goes beyond the previous work to efficiently handle the hierarchy of social relationships. This article introduces a novel technique named Quantifiable Social Relationship (QSR) analysis for quantifying social relationships to analyze relationships between agents from their textual conversations. QSR uses cross-disciplinary techniques from computational linguistics and cognitive psychology to identify relationships. QSR utilizes sentiment and behavioral styles displayed in the conversations for mapping them onto level II relationship categories. Then, for identifying the level III relationship categories, QSR uses level II relationships, sentiments, interactions, and word embeddings as key features. QSR employs natural language processing techniques for feature engineering and state-of-the-art embeddings generated by word2vec, global vectors (glove), and bidirectional encoder representations from transformers (bert). QSR combines the intrinsic conversational features with word embeddings for classifying relationships. QSR achieves an accuracy of up to 89% for classifying relationship subtypes. The evaluation shows that QSR can accurately identify the hierarchical relationships between agents by extracting intrinsic and extrinsic features from textual conversations between agents

    Basic tasks of sentiment analysis

    Full text link
    Subjectivity detection is the task of identifying objective and subjective sentences. Objective sentences are those which do not exhibit any sentiment. So, it is desired for a sentiment analysis engine to find and separate the objective sentences for further analysis, e.g., polarity detection. In subjective sentences, opinions can often be expressed on one or multiple topics. Aspect extraction is a subtask of sentiment analysis that consists in identifying opinion targets in opinionated text, i.e., in detecting the specific aspects of a product or service the opinion holder is either praising or complaining about

    Automated Semantic Understanding of Human Emotions in Writing and Speech

    Get PDF
    Affective Human Computer Interaction (A-HCI) will be critical for the success of new technologies that will prevalent in the 21st century. If cell phones and the internet are any indication, there will be continued rapid development of automated assistive systems that help humans to live better, more productive lives. These will not be just passive systems such as cell phones, but active assistive systems like robot aides in use in hospitals, homes, entertainment room, office, and other work environments. Such systems will need to be able to properly deduce human emotional state before they determine how to best interact with people. This dissertation explores and extends the body of knowledge related to Affective HCI. New semantic methodologies are developed and studied for reliable and accurate detection of human emotional states and magnitudes in written and spoken speech; and for mapping emotional states and magnitudes to 3-D facial expression outputs. The automatic detection of affect in language is based on natural language processing and machine learning approaches. Two affect corpora were developed to perform this analysis. Emotion classification is performed at the sentence level using a step-wise approach which incorporates sentiment flow and sentiment composition features. For emotion magnitude estimation, a regression model was developed to predict evolving emotional magnitude of actors. Emotional magnitudes at any point during a story or conversation are determined by 1) previous emotional state magnitude; 2) new text and speech inputs that might act upon that state; and 3) information about the context the actors are in. Acoustic features are also used to capture additional information from the speech signal. Evaluation of the automatic understanding of affect is performed by testing the model on a testing subset of the newly extended corpus. To visualize actor emotions as perceived by the system, a methodology was also developed to map predicted emotion class magnitudes to 3-D facial parameters using vertex-level mesh morphing. The developed sentence level emotion state detection approach achieved classification accuracies as high as 71% for the neutral vs. emotion classification task in a test corpus of children’s stories. After class re-sampling, the results of the step-wise classification methodology on a test sub-set of a medical drama corpus achieved accuracies in the 56% to 84% range for each emotion class and polarity. For emotion magnitude prediction, the developed recurrent (prior-state feedback) regression model using both text-based and acoustic based features achieved correlation coefficients in the range of 0.69 to 0.80. This prediction function was modeled using a non-linear approach based on Support Vector Regression (SVR) and performed better than other approaches based on Linear Regression or Artificial Neural Networks

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail
    • …
    corecore