3 research outputs found

    Emergent Central Pattern Generator Behavior in Gap-Junction-Coupled Hodgkin-Huxley Style Neuron Model

    Get PDF
    Most models of central pattern generators (CPGs) involve two distinct nuclei mutually inhibiting one another via synapses. Here, we present a single-nucleus model of biologically realistic Hodgkin-Huxley neurons with random gap junction coupling. Despite no explicit division of neurons into two groups, we observe a spontaneous division of neurons into two distinct firing groups. In addition, we also demonstrate this phenomenon in a simplified version of the model, highlighting the importance of afterhyperpolarization currents (I AHP ) to CPGs utilizing gap junction coupling. The properties of these CPGs also appear sensitive to gap junction conductance, probability of gap junction coupling between cells, topology of gap junction coupling, and, to a lesser extent, input current into our simulated nucleus

    Emergent Central Pattern Generator Behavior in Gap-Junction-Coupled Hodgkin-Huxley Style Neuron Model

    Get PDF
    Most models of central pattern generators (CPGs) involve two distinct nuclei mutually inhibiting one another via synapses. Here, we present a single-nucleus model of biologically realistic Hodgkin-Huxley neurons with random gap junction coupling. Despite no explicit division of neurons into two groups, we observe a spontaneous division of neurons into two distinct firing groups. In addition, we also demonstrate this phenomenon in a simplified version of the model, highlighting the importance of afterhyperpolarization currents () to CPGs utilizing gap junction coupling. The properties of these CPGs also appear sensitive to gap junction conductance, probability of gap junction coupling between cells, topology of gap junction coupling, and, to a lesser extent, input current into our simulated nucleus

    Development and plasticity of locomotor circuits in the zebrafish spinal cord

    Full text link
    A fundamental goal in neurobiology is to understand the development and organization of neural circuits that drive behavior. In the embryonic spinal cord, the first motor activity is a slow coiling of the trunk that is sensory-independent and therefore appears to be centrally driven. Embryos later become responsive to sensory stimuli and eventually locomote, behaviors that are shaped by the integration of central patterns and sensory feedback. In this thesis I used a simple vertebrate model, the zebrafish, to investigate in three manners how developing spinal networks control these earliest locomotor behaviors. For the first part of this thesis, I characterized the rapid transition of the spinal cord from a purely electrical circuit to a hybrid network that relies on both chemical and electrical synapses. Using genetics, lesions and pharmacology we identified a transient embryonic behavior preceding swimming, termed double coiling. I used electrophysiology to reveal that spinal motoneurons had glutamate-dependent activity patterns that correlated with double coiling as did a population of descending ipsilateral glutamatergic interneurons that also innervated motoneurons at this time. This work (Knogler et al., Journal of Neuroscience, 2014) suggests that double coiling is a discrete step in the transition of the motor network from an electrically coupled circuit that can only produce simple coils to a spinal network driven by descending chemical neurotransmission that can generate more complex behaviors. In the second part of my thesis, I studied how spinal networks filter sensory information during self-generated movement. In the zebrafish embryo, mechanosensitive sensory neurons fire in response to light touch and excite downstream commissural glutamatergic interneurons to produce a flexion response, but spontaneous coiling does not trigger this reflex. I performed electrophysiological recordings to show that these interneurons received glycinergic inputs during spontaneous fictive coiling that prevented them from firing action potentials. Glycinergic inhibition specifically of these interneurons and not other spinal neurons was due to the expression of a unique glycine receptor subtype that enhanced the inhibitory current. This work (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggests that glycinergic signaling onto sensory interneurons acts as a corollary discharge signal for reflex inhibition during movement. v In the final part of my thesis I describe work begun during my masters and completed during my doctoral degree studying how homeostatic plasticity is expressed in vivo at central synapses following chronic changes in network activity. I performed whole-cell recordings from spinal motoneurons to show that excitatory synaptic strength scaled up in response to decreased network activity, in accordance with previous in vitro studies. At the network level, I showed that homeostatic plasticity mechanisms were not necessary to maintain the timing of spinal circuits driving behavior, which appeared to be hardwired in the developing zebrafish. This study (Knogler et al., Journal of Neuroscience, 2010) provided for the first time important in vivo results showing that synaptic patterning is less plastic than synaptic strength during development in the intact animal. In conclusion, the findings presented in this thesis contribute widely to our understanding of the neural circuits underlying simple motor behaviors in the vertebrate spinal cord.Un objectif important en neurobiologie est de comprendre le deĢveloppement et l'organisation des circuits neuronaux qui entrainent les comportements. Chez l'embryon, la premieĢ€re activiteĢ motrice est une lente contraction spontaneĢe qui est entraineĢe par l'activiteĢ intrinseĢ€que des circuits spinaux. Ensuite, les embryons deviennent sensibles aux stimulations sensorielles et ils peuvent eĢventuellement nager, comportements qui sont facĢ§onneĢes par l'inteĢgration de l'activiteĢ intrinseĢ€que et le reĢtrocontroĢ‚le sensoriel. Pour cette theĢ€se, j'ai utiliseĢ un modeĢ€le verteĢbreĢ simple, le poisson zeĢ€bre, afin d'eĢtudier en trois temps comment les reĢseaux spinaux se deĢveloppent et controĢ‚lent les comportements locomoteurs embryonnaires. Pour la premieĢ€re partie de cette theĢ€se j'ai caracteĢriseĢ la transition rapide de la moelle eĢpinieĢ€re d'un circuit entieĢ€rement eĢlectrique aĢ€ un reĢseau hybride qui utilise aĢ€ la fois des synapses chimiques et eĢlectriques. Nos expeĢriences ont reĢveĢleĢ un comportement embryonnaire transitoire qui preĢceĢ€de la natation et qu'on appelle Ā« double coiling Ā». J'ai deĢmontreĢ que les motoneurones spinaux preĢsentaient une activiteĢ deĢpendante du glutamate correĢleĢe avec le Ā« double coiling Ā» comme l'a fait une population d'interneurones glutamatergiques ipsilateĢraux qui innervent les motoneurones aĢ€ cet aĢ‚ge. Ce travail (Knogler et al., Journal of Neuroscience, 2014) suggeĢ€re que le Ā« double coiling Ā» est une eĢtape distincte dans la transition du reĢseau moteur aĢ€ partir d'un circuit eĢlectrique treĢ€s simple aĢ€ un reĢseau spinal entraineĢ par la neurotransmission chimique pour geĢneĢrer des comportements plus complexes. Pour la seconde partie de ma theĢ€se, j'ai eĢtudieĢ comment les reĢseaux spinaux filtrent l'information sensorielle de mouvements auto-geĢneĢreĢs. Chez l'embryon, les neurones sensoriels meĢcanosensibles sont activeĢs par un leĢger toucher et ils excitent en aval des interneurones sensoriels pour produire une reĢponse de flexion. Par contre, les contractions spontaneĢes ne deĢclenchent pas ce reĢflexe meĢ‚me si les neurones sensoriels sont toujours activeĢs. J'ai deĢmontreĢ que les interneurones sensoriels recĢ§oivent des entreĢes glycinergiques pendant les contractions spontaneĢes fictives qui les empeĢ‚chaient de geĢneĢrer des potentiels d'action. L'inhibition glycinergique de ces interneurones, mais pas des autres neurones spinaux, est due aĢ€ l'expression d'un sous-type de reĢcepteur glycinergique unique qui augmente iii le courant inhibiteur. Ce travail (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggeĢ€re que la signalisation glycinergique chez les interneurones sensoriels agit comme un signal de deĢcharge corolaire pour l'inhibition des reĢflexes pendant les mouvements auto- geĢneĢreĢs. Dans la dernieĢ€re partie de ma theĢ€se, je deĢcris le travail commenceĢ aĢ€ la maiĢ‚trise et termineĢ au doctorat qui montre comment la plasticiteĢ homeĢostatique est exprimeĢe in vivo aux synapses centrales aĢ€ la suite des changements chroniques de l'activiteĢ du reĢseau. J'ai deĢmontreĢ que l'efficaciteĢ synaptique excitatrice de neurones moteurs spinaux est augmenteĢe aĢ€ la suite dā€™une diminution de l'activiteĢ du reĢseau, en accord avec des eĢtudes in vitro preĢceĢdentes. Par contre, au niveau du reĢseau j'ai deĢmontreĢ que la plasticiteĢ homeĢostatique n'eĢtait pas neĢcessaire pour maintenir la rythmiciteĢ des circuits spinaux qui entrainent les comportements embryonnaires. Cette eĢtude (Knogler et al., Journal of Neuroscience, 2010) a reĢveĢleĢ pour la premieĢ€re fois que l'organisation du circuit est moins plastique que l'efficaciteĢ synaptique au cours du deĢveloppement chez l'embryon. En conclusion, les reĢsultats preĢsenteĢs dans cette theĢ€se contribuent aĢ€ notre compreĢhension des circuits neuronaux de la moelle eĢpinieĢ€re qui sous-tendent les comportements moteurs simples de l'embryon
    corecore