6 research outputs found

    Embeddings of Schatten Norms with Applications to Data Streams

    Get PDF
    A_poly(nd) in R^{n x d}, suppose we want to construct a linear map L such that L(A_i) in R^{n\u27 x d\u27} for each i, where n\u27 = 1. Then how large do n\u27 and d\u27 need to be as a function of D_{p,q}? We nearly resolve this question for every p, q >= 1, for the case where L(A_i) can be expressed as R*A_i*S, where R and S are arbitrary matrices that are allowed to depend on A_1, ... ,A_t, that is, L(A_i) can be implemented by left and right matrix multiplication. Namely, for every p, q >= 1, we provide nearly matching upper and lower bounds on the size of n\u27 and d\u27 as a function of D_{p,q}. Importantly, our upper bounds are oblivious, meaning that R and S do not depend on the A_i, while our lower bounds hold even if R and S depend on the A_i. As an application of our upper bounds, we answer a recent open question of Blasiok et al. about space-approximation trade-offs for the Schatten 1-norm, showing in a data stream it is possible to estimate the Schatten-1 norm up to a factor of D >= 1 using O~(min(n, d)^2/D^4) space

    Impossibility of dimension reduction in the nuclear norm

    Full text link
    Let S1\mathsf{S}_1 (the Schatten--von Neumann trace class) denote the Banach space of all compact linear operators T:β„“2β†’β„“2T:\ell_2\to \ell_2 whose nuclear norm βˆ₯Tβˆ₯S1=βˆ‘j=1βˆžΟƒj(T)\|T\|_{\mathsf{S}_1}=\sum_{j=1}^\infty\sigma_j(T) is finite, where {Οƒj(T)}j=1∞\{\sigma_j(T)\}_{j=1}^\infty are the singular values of TT. We prove that for arbitrarily large n∈Nn\in \mathbb{N} there exists a subset CβŠ†S1\mathcal{C}\subseteq \mathsf{S}_1 with ∣C∣=n|\mathcal{C}|=n that cannot be embedded with bi-Lipschitz distortion O(1)O(1) into any no(1)n^{o(1)}-dimensional linear subspace of S1\mathsf{S}_1. C\mathcal{C} is not even a O(1)O(1)-Lipschitz quotient of any subset of any no(1)n^{o(1)}-dimensional linear subspace of S1\mathsf{S}_1. Thus, S1\mathsf{S}_1 does not admit a dimension reduction result \'a la Johnson and Lindenstrauss (1984), which complements the work of Harrow, Montanaro and Short (2011) on the limitations of quantum dimension reduction under the assumption that the embedding into low dimensions is a quantum channel. Such a statement was previously known with S1\mathsf{S}_1 replaced by the Banach space β„“1\ell_1 of absolutely summable sequences via the work of Brinkman and Charikar (2003). In fact, the above set C\mathcal{C} can be taken to be the same set as the one that Brinkman and Charikar considered, viewed as a collection of diagonal matrices in S1\mathsf{S}_1. The challenge is to demonstrate that C\mathcal{C} cannot be faithfully realized in an arbitrary low-dimensional subspace of S1\mathsf{S}_1, while Brinkman and Charikar obtained such an assertion only for subspaces of S1\mathsf{S}_1 that consist of diagonal operators (i.e., subspaces of β„“1\ell_1). We establish this by proving that the Markov 2-convexity constant of any finite dimensional linear subspace XX of S1\mathsf{S}_1 is at most a universal constant multiple of log⁑dim(X)\sqrt{\log \mathrm{dim}(X)}
    corecore