4 research outputs found

    Embed2Detect: temporally clustered embedded words for event detection in social media

    Get PDF
    Social media is becoming a primary medium to discuss what is happening around the world. Therefore, the data generated by social media platforms contain rich information which describes the ongoing events. Further, the timeliness associated with these data is capable of facilitating immediate insights. However, considering the dynamic nature and high volume of data production in social media data streams, it is impractical to filter the events manually and therefore, automated event detection mechanisms are invaluable to the community. Apart from a few notable exceptions, most previous research on automated event detection have focused only on statistical and syntactical features in data and lacked the involvement of underlying semantics which are important for effective information retrieval from text since they represent the connections between words and their meanings. In this paper, we propose a novel method termed Embed2Detect for event detection in social media by combining the characteristics in word embeddings and hierarchical agglomerative clustering. The adoption of word embeddings gives Embed2Detect the capability to incorporate powerful semantical features into event detection and overcome a major limitation inherent in previous approaches. We experimented our method on two recent real social media data sets which represent the sports and political domain and also compared the results to several state-of-the-art methods. The obtained results show that Embed2Detect is capable of effective and efficient event detection and it outperforms the recent event detection methods. For the sports data set, Embed2Detect achieved 27% higher F-measure than the best-performed baseline and for the political data set, it was an increase of 29%

    Human and Artificial Intelligence

    Get PDF
    Although tremendous advances have been made in recent years, many real-world problems still cannot be solved by machines alone. Hence, the integration between Human Intelligence and Artificial Intelligence is needed. However, several challenges make this integration complex. The aim of this Special Issue was to provide a large and varied collection of high-level contributions presenting novel approaches and solutions to address the above issues. This Special Issue contains 14 papers (13 research papers and 1 review paper) that deal with various topics related to human–machine interactions and cooperation. Most of these works concern different aspects of recommender systems, which are among the most widespread decision support systems. The domains covered range from healthcare to movies and from biometrics to cultural heritage. However, there are also contributions on vocal assistants and smart interactive technologies. In summary, each paper included in this Special Issue represents a step towards a future with human–machine interactions and cooperation. We hope the readers enjoy reading these articles and may find inspiration for their research activities
    corecore