4 research outputs found

    What Petri Net Obliges Us to Say: Comparing Approaches for Behavior Composition

    Full text link
    We identify and demonstrate a weakness of Petri Nets (PN) in specifying composite behavior of reactive systems. Specifically, we show how, when specifying multiple requirements in one PN model, modelers are obliged to specify mechanisms for combining these requirements. This yields, in many cases, over-specification and incorrect models. We demonstrate how some execution paths are missed, and some are generated unintentionally. To support this claim, we analyze PN models from the literature, identify the combination mechanisms, and demonstrate their effect on the correctness of the model. To address this problem, we propose to model the system behavior using behavioral programming (BP), a software development and modeling paradigm designed for seamless integration of independent requirements. Specifically, we demonstrate how the semantics of BP, which define how to interweave scenarios into a single model, allow avoiding the over-specification. Additionally, while BP maintains the same mathematical properties as PN, it provides means for changing the model dynamically, thus increasing the agility of the specification. We compare BP and PN in quantitative and qualitative measures by analyzing the models, their generated execution paths, and the specification process. Finally, while BP is supported by tools that allow for applying formal methods and reasoning techniques to the model, it lacks the legacy of PN tools and algorithms. To address this issue, we propose semantics and a tool for translating BP models to PN and vice versa.Comment: 14 pages, 10 figures, Published in IEEE Transactions on Software Engineering (IEEE TSE

    Safe Deep Reinforcement Learning: Enhancing the Reliability of Intelligent Systems

    Get PDF
    In the last few years, the impressive success of deep reinforcement learning (DRL) agents in a wide variety of applications has led to the adoption of these systems in safety-critical contexts (e.g., autonomous driving, robotics, and medical applications), where expensive hardware and human safety can be involved. In such contexts, an intelligent learning agent must adhere to certain requirements that go beyond the simple accomplishment of the task and typically include constraints on the agent's behavior. Against this background, this thesis proposes a set of training and validation methodologies that constitute a unified pipeline to generate safe and reliable DRL agents. In the first part of this dissertation, we focus on the problem of constrained DRL, leaving the challenging problem of the formal verification of deep neural networks for the second part of this work. As humans, in our growing process, the help of a mentor is crucial to learn effective strategies to solve a problem while a learning process driven only by a trial-and-error approach usually leads to unsafe and inefficient solutions. Similarly, a pure end-to-end deep reinforcement learning approach often results in suboptimal policies, which typically translates into unpredictable, and thus unreliable, behaviors. Following this intuition, we propose to impose a set of constraints into the DRL loop to guide the training process. These requirements, which typically encode domain expert knowledge, can be seen as suggestions that the agent should follow but is allowed to sometimes ignore if useful to maximize the reward signal. A foundational requirement for our work is finding a proper strategy to define and formally encode these constraints (which we refer to as \textit{rules}). In this thesis, we propose to exploit a formal language inherited from the software engineering community: scenario-based programming (SBP). For the actual training, we rely on the constrained reinforcement learning paradigm, proposing an extended version of the Lagrangian PPO algorithm. Recalling the parallelism with human beings, before being authorized to perform safety-critical operations, we must obtain a certification (e.g., a license to drive a car or a degree to perform medical operations). In the second part of this dissertation, we apply this concept in a deep reinforcement learning context, where the intelligent agents are controlled by artificial neural networks. In particular, we propose to perform a model selection phase after the training to find models that formally respect some given safety requirements before the deployment. However, DNNs have long been considered unpredictable black boxes and thus unsuitable for safety-critical contexts. Against this background, we build upon the emerging field of formal verification for neural networks to extend state-of-the-art approaches to robotic decision-making contexts. We propose ``ProVe", a verification tool for decision-making DNNs that quantifies the probability of violating the specified requirements. In the last chapter of this thesis, we provide a complete case study on a popular robotic problem: ``mapless navigation". Here, we show a concrete example of the application of our pipeline, starting from the definition of the requirements to the training and the final formal verification phase, to finally obtain a provably safe and effective agent

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years
    corecore