1,233 research outputs found

    A Color Image Watermarking Scheme Resistant against Geometrical Attacks

    Get PDF
    The geometrical attacks are still a problem for many digital watermarking algorithms at present. In this paper, we propose a watermarking algorithm for color images resistant to geometrical distortions (rotation and scaling). The singular value decomposition is used for watermark embedding and extraction. The log-polar map- ping (LPM) and phase correlation method are used to register the position of geometrical distortion suffered by the watermarked image. Experiments with different kinds of color images and watermarks demonstrate that the watermarking algorithm is robust to common image processing attacks, especially geometrical attacks

    Digital Image Watermaking in Color Models Using DCT Transformation

    Get PDF
    In recent years, an access to multimedia data has become much easier due to the rapid growth of the Internet. While this is usually considered an improvement of everyday life, it also makes unauthorized copying and distributing of multimedia data much easier, therefore presenting a challenge in the field of copyright protection. Digital watermarking, which is inserting copyright information into the data, has been proposed to solve the problem. In this paper two original watermarking schemes based on DCT transformation for ownership verification and authentication of color images were proposed. Some color models in process of watermarks embedding and extracting are described too

    Using Algebraic Fractals in Steganography

    Get PDF
    Steganography is a technology for hiding watermarks inside media files, which is relevant in the field of copyright protection, secret communication, etc. The effectiveness of modern methods of digital image processing allows determining the presence of embedded watermarks in a stegoimage using the original image and its statistical characteristics, as well as a priori information about the method and algorithm of embedding. In contrast to the known approaches, it is proposed to use algebraic fractals for steganographic embedding of watermarks in color images. It is proposed to use algebraic fractals in the form of medium cover image acting as a secret key, which allows the embedding to be more resistant to computer attacks, including JPEG compression. The main advantage of such use of fractals is an increase in the level of secrecy in which the attacker must know the parameters of the fractal image. Without knowledge of these parameters, it will not be enough to have the original stegoimage and a priori information about the embedding method to extract secret data. This chapter analyzes the methods and provides examples of generating algebraic fractals in the form of the Julia set using the escape time algorithm

    Statistical mechanical evaluation of spread spectrum watermarking model with image restoration

    Get PDF
    In cases in which an original image is blind, a decoding method where both the image and the messages can be estimated simultaneously is desirable. We propose a spread spectrum watermarking model with image restoration based on Bayes estimation. We therefore need to assume some prior probabilities. The probability for estimating the messages is given by the uniform distribution, and the ones for the image are given by the infinite range model and 2D Ising model. Any attacks from unauthorized users can be represented by channel models. We can obtain the estimated messages and image by maximizing the posterior probability. We analyzed the performance of the proposed method by the replica method in the case of the infinite range model. We first calculated the theoretical values of the bit error rate from obtained saddle point equations and then verified them by computer simulations. For this purpose, we assumed that the image is binary and is generated from a given prior probability. We also assume that attacks can be represented by the Gaussian channel. The computer simulation retults agreed with the theoretical values. In the case of prior probability given by the 2D Ising model, in which each pixel is statically connected with four-neighbors, we evaluated the decoding performance by computer simulations, since the replica theory could not be applied. Results using the 2D Ising model showed that the proposed method with image restoration is as effective as the infinite range model for decoding messages. We compared the performances in a case in which the image was blind and one in which it was informed. The difference between these cases was small as long as the embedding and attack rates were small. This demonstrates that the proposed method with simultaneous estimation is effective as a watermarking decoder
    corecore