47,669 research outputs found

    An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis

    Get PDF
    The classical Back-Propagation (BP) scheme with gradient-based optimization in training Artificial Neural Networks (ANNs) suffers from many drawbacks, such as the premature convergence, and the tendency of being trapped in local optimums. Therefore, as an alternative for the BP and gradient-based optimization schemes, various Evolutionary Algorithms (EAs), i.e., Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), and Differential Evolution (DE), have gained popularity in the field of ANN weight training. This study applied a new efficient and effective Shuffled Complex Evolutionary Global Optimization Algorithm with Principal Component Analysis – University of California Irvine (SP-UCI) to the weight training process of a three-layer feed-forward ANN. A large-scale numerical comparison is conducted among the SP-UCI-, PSO-, GA-, SA-, and DE-based ANNs on 17 benchmark, complex, and real-world datasets. Results show that SP-UCI-based ANN outperforms other EA-based ANNs in the context of convergence and generalization. Results suggest that the SP-UCI algorithm possesses good potential in support of the weight training of ANN in real-word problems. In addition, the suitability of different kinds of EAs on training ANN is discussed. The large-scale comparison experiments conducted in this paper are fundamental references for selecting proper ANN weight training algorithms in practice

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    Host Genetics and Viral Diversity: Report from a Global HIV Vaccine Enterprise Working Group

    Get PDF
    The Global HIV Vaccine Enterprise convened a workshop in September 2009 to discuss human and viral genetic variation and its impact on future directions for HIV vaccine research and development. The formidable challenges presented by virus and host genetic variability are interrelated and complicate vaccine development. HIV vaccine researchers need to develop innovative approaches that will facilitate addressing these questions in novel ways
    • …
    corecore