5,032 research outputs found

    Elimination of All Bad Local Minima in Deep Learning

    Full text link
    In this paper, we theoretically prove that adding one special neuron per output unit eliminates all suboptimal local minima of any deep neural network, for multi-class classification, binary classification, and regression with an arbitrary loss function, under practical assumptions. At every local minimum of any deep neural network with these added neurons, the set of parameters of the original neural network (without added neurons) is guaranteed to be a global minimum of the original neural network. The effects of the added neurons are proven to automatically vanish at every local minimum. Moreover, we provide a novel theoretical characterization of a failure mode of eliminating suboptimal local minima via an additional theorem and several examples. This paper also introduces a novel proof technique based on the perturbable gradient basis (PGB) necessary condition of local minima, which provides new insight into the elimination of local minima and is applicable to analyze various models and transformations of objective functions beyond the elimination of local minima.Comment: Accepted to appear in AISTATS 202

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    The Global Landscape of Neural Networks: An Overview

    Full text link
    One of the major concerns for neural network training is that the non-convexity of the associated loss functions may cause bad landscape. The recent success of neural networks suggests that their loss landscape is not too bad, but what specific results do we know about the landscape? In this article, we review recent findings and results on the global landscape of neural networks. First, we point out that wide neural nets may have sub-optimal local minima under certain assumptions. Second, we discuss a few rigorous results on the geometric properties of wide networks such as "no bad basin", and some modifications that eliminate sub-optimal local minima and/or decreasing paths to infinity. Third, we discuss visualization and empirical explorations of the landscape for practical neural nets. Finally, we briefly discuss some convergence results and their relation to landscape results.Comment: 16 pages. 8 figure
    • …
    corecore