7,400 research outputs found

    Elimination for generic sparse polynomial systems

    Get PDF
    We present a new probabilistic symbolic algorithm that, given a variety defined in an n-dimensional affine space by a generic sparse system with fixed supports, computes the Zariski closure of its projection to an l-dimensional coordinate affine space with l < n. The complexity of the algorithm depends polynomially on combinatorial invariants associated to the supports.Comment: 22 page

    Toric Sylvester forms and applications in elimination theory

    Full text link
    In this paper, we investigate the structure of the saturation of ideals generated by square systems of sparse homogeneous polynomials over a toric variety XX with respect to the irrelevant ideal of XX. As our main results, we establish a duality property and make it explicit by introducing toric Sylvester forms, under a certain positivity assumption on XX. In particular, we prove that toric Sylvester forms yield bases of some graded components of Isat/II^{sat}/I, where II denotes an ideal generated by n+1n + 1 generic forms, nn is the dimension of XX and II sat the saturation of II with respect to the irrelevant ideal of the Cox ring of XX. Then, to illustrate the relevance of toric Sylvester forms we provide three consequences in elimination theory: (1) we introduce a new family of elimination matrices that can be used to solve sparse polynomial systems by means of linear algebra methods, including overdetermined polynomial systems; (2) by incorporating toric Sylvester forms to the classical Koszul complex associated to a polynomial system, we obtain new expressions of the sparse resultant as a determinant of a complex; (3) we prove a new formula for computing toric residues of the product of two forms.Comment: 25 pages, 1 figur

    Exploiting chordal structure in polynomial ideals: a Gr\"obner bases approach

    Get PDF
    Chordal structure and bounded treewidth allow for efficient computation in numerical linear algebra, graphical models, constraint satisfaction and many other areas. In this paper, we begin the study of how to exploit chordal structure in computational algebraic geometry, and in particular, for solving polynomial systems. The structure of a system of polynomial equations can be described in terms of a graph. By carefully exploiting the properties of this graph (in particular, its chordal completions), more efficient algorithms can be developed. To this end, we develop a new technique, which we refer to as chordal elimination, that relies on elimination theory and Gr\"obner bases. By maintaining graph structure throughout the process, chordal elimination can outperform standard Gr\"obner basis algorithms in many cases. The reason is that all computations are done on "smaller" rings, of size equal to the treewidth of the graph. In particular, for a restricted class of ideals, the computational complexity is linear in the number of variables. Chordal structure arises in many relevant applications. We demonstrate the suitability of our methods in examples from graph colorings, cryptography, sensor localization and differential equations.Comment: 40 pages, 5 figure

    Computational linear algebra over finite fields

    Get PDF
    We present here algorithms for efficient computation of linear algebra problems over finite fields

    Efficient Computation of the Characteristic Polynomial

    Full text link
    This article deals with the computation of the characteristic polynomial of dense matrices over small finite fields and over the integers. We first present two algorithms for the finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices

    Implicitization of curves and (hyper)surfaces using predicted support

    Get PDF
    We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation. For predicting the implicit support, we focus on methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynomial, via sparse resultant theory. Our algorithm works even in the presence of base points but, in this case, the implicit equation shall be obtained as a factor of the produced polynomial. We implement our methods on Maple, and some on Matlab as well, and study their numerical stability and efficiency on several classes of curves and surfaces. We apply our approach to approximate implicitization, and quantify the accuracy of the approximate output, which turns out to be satisfactory on all tested examples; we also relate our measures to Hausdorff distance. In building a square or rectangular matrix, an important issue is (over)sampling the given curve or surface: we conclude that unitary complexes offer the best tradeoff between speed and accuracy when numerical methods are employed, namely SVD, whereas for exact kernel computation random integers is the method of choice. We compare our prototype to existing software and find that it is rather competitive
    corecore