7,865 research outputs found

    Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers

    Full text link
    Flow- and context-sensitive points-to analysis is difficult to scale; for top-down approaches, the problem centers on repeated analysis of the same procedure; for bottom-up approaches, the abstractions used to represent procedure summaries have not scaled while preserving precision. We propose a novel abstraction called the Generalized Points-to Graph (GPG) which views points-to relations as memory updates and generalizes them using the counts of indirection levels leaving the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure summaries in terms of memory updates and control flow between them. Their compactness is ensured by the following optimizations: strength reduction reduces the indirection levels, redundancy elimination removes redundant memory updates and minimizes control flow (without over-approximating data dependence between memory updates), and call inlining enhances the opportunities of these optimizations. We devise novel operations and data flow analyses for these optimizations. Our quest for scalability of points-to analysis leads to the following insight: The real killer of scalability in program analysis is not the amount of data but the amount of control flow that it may be subjected to in search of precision. The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing precision (i.e., by preserving data dependence without over-approximation). This is the reason why the GPGs are very small even for main procedures that contain the effect of the entire program. This allows our implementation to scale to 158kLoC for C programs

    On the Complexity and Performance of Parsing with Derivatives

    Full text link
    Current algorithms for context-free parsing inflict a trade-off between ease of understanding, ease of implementation, theoretical complexity, and practical performance. No algorithm achieves all of these properties simultaneously. Might et al. (2011) introduced parsing with derivatives, which handles arbitrary context-free grammars while being both easy to understand and simple to implement. Despite much initial enthusiasm and a multitude of independent implementations, its worst-case complexity has never been proven to be better than exponential. In fact, high-level arguments claiming it is fundamentally exponential have been advanced and even accepted as part of the folklore. Performance ended up being sluggish in practice, and this sluggishness was taken as informal evidence of exponentiality. In this paper, we reexamine the performance of parsing with derivatives. We have discovered that it is not exponential but, in fact, cubic. Moreover, simple (though perhaps not obvious) modifications to the implementation by Might et al. (2011) lead to an implementation that is not only easy to understand but also highly performant in practice.Comment: 13 pages; 12 figures; implementation at http://bitbucket.org/ucombinator/parsing-with-derivatives/ ; published in PLDI '16, Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, June 13 - 17, 2016, Santa Barbara, CA, US

    Expression-based aliasing for OO-languages

    Full text link
    Alias analysis has been an interesting research topic in verification and optimization of programs. The undecidability of determining whether two expressions in a program may reference to the same object is the main source of the challenges raised in alias analysis. In this paper we propose an extension of a previously introduced alias calculus based on program expressions, to the setting of unbounded program executions s.a. infinite loops and recursive calls. Moreover, we devise a corresponding executable specification in the K-framework. An important property of our extension is that, in a non-concurrent setting, the corresponding alias expressions can be over-approximated in terms of a notion of regular expressions. This further enables us to show that the associated K-machinery implements an algorithm that always stops and provides a sound over-approximation of the "may aliasing" information, where soundness stands for the lack of false negatives. As a case study, we analyze the integration and further applications of the alias calculus in SCOOP. The latter is an object-oriented programming model for concurrency, recently formalized in Maude; K-definitions can be compiled into Maude for execution

    Improving Prolog Programs: Refactoring for Prolog

    Full text link
    Refactoring is an established technique from the OO-community to restructure code: it aims at improving software readability, maintainability and extensibility. Although refactoring is not tied to the OO-paradigm in particular, its ideas have not been applied to Logic Programming until now. This paper applies the ideas of refactoring to Prolog programs. A catalogue is presented listing refactorings classified according to scope. Some of the refactorings have been adapted from the OO-paradigm, while others have been specifically designed for Prolog. Also the discrepancy between intended and operational semantics in Prolog is addressed by some of the refactorings. In addition, ViPReSS, a semi-automatic refactoring browser, is discussed and the experience with applying \vipress to a large Prolog legacy system is reported. Our main conclusion is that refactoring is not only a viable technique in Prolog but also a rather desirable one.Comment: To appear in ICLP 200

    Mace4 Reference Manual and Guide

    Full text link
    Mace4 is a program that searches for finite models of first-order formulas. For a given domain size, all instances of the formulas over the domain are constructed. The result is a set of ground clauses with equality. Then, a decision procedure based on ground equational rewriting is applied. If satisfiability is detected, one or more models are printed. Mace4 is a useful complement to first-order theorem provers, with the prover searching for proofs and Mace4 looking for countermodels, and it is useful for work on finite algebras. Mace4 performs better on equational problems than did our previous model-searching program Mace2.Comment: 17 page

    Simple and Effective Type Check Removal through Lazy Basic Block Versioning

    Get PDF
    Dynamically typed programming languages such as JavaScript and Python defer type checking to run time. In order to maximize performance, dynamic language VM implementations must attempt to eliminate redundant dynamic type checks. However, type inference analyses are often costly and involve tradeoffs between compilation time and resulting precision. This has lead to the creation of increasingly complex multi-tiered VM architectures. This paper introduces lazy basic block versioning, a simple JIT compilation technique which effectively removes redundant type checks from critical code paths. This novel approach lazily generates type-specialized versions of basic blocks on-the-fly while propagating context-dependent type information. This does not require the use of costly program analyses, is not restricted by the precision limitations of traditional type analyses and avoids the implementation complexity of speculative optimization techniques. We have implemented intraprocedural lazy basic block versioning in a JavaScript JIT compiler. This approach is compared with a classical flow-based type analysis. Lazy basic block versioning performs as well or better on all benchmarks. On average, 71% of type tests are eliminated, yielding speedups of up to 50%. We also show that our implementation generates more efficient machine code than TraceMonkey, a tracing JIT compiler for JavaScript, on several benchmarks. The combination of implementation simplicity, low algorithmic complexity and good run time performance makes basic block versioning attractive for baseline JIT compilers
    • …
    corecore