53,959 research outputs found
Improvements to the APBS biomolecular solvation software suite
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve
the equations of continuum electrostatics for large biomolecular assemblages
that has provided impact in the study of a broad range of chemical, biological,
and biomedical applications. APBS addresses three key technology challenges for
understanding solvation and electrostatics in biomedical applications: accurate
and efficient models for biomolecular solvation and electrostatics, robust and
scalable software for applying those theories to biomolecular systems, and
mechanisms for sharing and analyzing biomolecular electrostatics data in the
scientific community. To address new research applications and advancing
computational capabilities, we have continually updated APBS and its suite of
accompanying software since its release in 2001. In this manuscript, we discuss
the models and capabilities that have recently been implemented within the APBS
software package including: a Poisson-Boltzmann analytical and a
semi-analytical solver, an optimized boundary element solver, a geometry-based
geometric flow solvation model, a graph theory based algorithm for determining
p values, and an improved web-based visualization tool for viewing
electrostatics
Atomistic quantum transport modeling of metal-graphene nanoribbon heterojunctions
We calculate quantum transport for metal-graphene nanoribbon heterojunctions
within the atomistic self-consistent Schr\"odinger/Poisson scheme. Attention is
paid on both the chemical aspects of the interface bonding as well the
one-dimensional electrostatics along the ribbon length. Band-bending and doping
effects strongly influence the transport properties, giving rise to conductance
asymmetries and a selective suppression of the subband formation. Junction
electrostatics and p-type characteristics drive the conduction mechanism in the
case of high work function Au, Pd and Pt electrodes, while contact resistance
becomes dominant in the case of Al.Comment: 4 pages, 5 figure
Toward transferable interatomic van der Waals interactions without electrons: The role of multipole electrostatics and many-body dispersion
We estimate polarizabilities of atoms in molecules without electron density,
using a Voronoi tesselation approach instead of conventional density
partitioning schemes. The resulting atomic dispersion coefficients are
calculated, as well as many-body dispersion effects on intermolecular potential
energies. We also estimate contributions from multipole electrostatics and
compare them to dispersion. We assess the performance of the resulting
intermolecular interaction model from dispersion and electrostatics for more
than 1,300 neutral and charged, small organic molecular dimers. Applications to
water clusters, the benzene crystal, the anti-cancer drug
ellipticine---intercalated between two Watson-Crick DNA base pairs, as well as
six macro-molecular host-guest complexes highlight the potential of this method
and help to identify points of future improvement. The mean absolute error made
by the combination of static electrostatics with many-body dispersion reduces
at larger distances, while it plateaus for two-body dispersion, in conflict
with the common assumption that the simple correction will yield proper
dissociative tails. Overall, the method achieves an accuracy well within
conventional molecular force fields while exhibiting a simple parametrization
protocol.Comment: 13 pages, 8 figure
Electrostatics in wind-blown sand
Wind-blown sand, or "saltation," is an important geological process, and the
primary source of atmospheric dust aerosols. Significant discrepancies exist
between classical saltation theory and measurements. We show here that these
discrepancies can be resolved by the inclusion of sand electrification in a
physically based saltation model. Indeed, we find that electric forces enhance
the concentration of saltating particles and cause them to travel closer to the
surface, in agreement with measurements. Our results thus indicate that sand
electrification plays an important role in saltation.Comment: 4 journal pages, 5 figures, and supplementary material. Article is in
press at PR
Lorentz-Violating Electrostatics and Magnetostatics
The static limit of Lorentz-violating electrodynamics in vacuum and in media
is investigated. Features of the general solutions include the need for
unconventional boundary conditions and the mixing of electrostatic and
magnetostatic effects. Explicit solutions are provided for some simple cases.
Electromagnetostatics experiments show promise for improving existing
sensitivities to parity-odd coefficients for Lorentz violation in the photon
sector.Comment: 9 page
- …
