31,331 research outputs found
Nano-engineering highly toughened fibre reinforced polymer composites by interleaving electrospun nanofibres for advanced applications
Polymer nanofibers as novel light-emitting sources and lasing material
Polymer micro- and nano-fibers, made of organic light-emitting materials with
optical gain, show interesting lasing properties. Fibers with diameters from
few tens of nm to few microns can be fabricated by electrospinning, a method
based on electrostatic fields applied to a polymer solution. The morphology and
emission properties of these fibers, composed of optically inert polymers
embedding laser dyes, are characterized by scanning electron and fluorescence
microscopy, and lasing is observed under optical pumping for fluences of the
order of 10^2 microJ cm^-2. In addition, light-emitting fibers can be
electrospun by conjugated polymers, their blends, and other active organics,
and can be exploited in a range of photonic and electronic devices. In
particular, waveguiding of light is observed and characterized, showing optical
loss coefficient in the range of 10^2-10^3 cm^-1. The reduced size of these
novel laser systems, combined with the possibility of achieving wavelength
tunability through transistor or other electrode-based architectures embedding
non-linear molecular layers, and with their peculiar mechanical robustness,
open interesting perspectives for realizing miniaturized laser sources to
integrate on-chip optical sensors and photonic circuits.Comment: 7 pages, 3 figures, 27 references. Invited contribution. Copyright
(2013) Society of Photo Optical Instrumentation Engineers. One print or
electronic copy may be made for personal use only. Systematic reproduction
and distribution, duplication of any material in this paper for a fee or for
commercial purposes, or modification of the content of the paper are
prohibite
Delamination resistant composites by interleaving bio-based long-chain polyamide nanofibers through optimal control of fiber diameter and fiber morphology
In this work an innovative electrospinning system is proposed that simultaneously has an adequate temperature resistance, a high increase in mode I (þ51%) and mode II (þ96%) delamination performance and can be commercially produced. Interleaving nanofibrous veils can potentially solve the issue of the limited delamination resistance encountered in composite laminates, but industrial upscaling has always been impeded by one or more critical factors. These constraining factors include a limited temperature stability of the nanofibers, a lack in simultaneous mode I and II delamination performance increase and the complexity of the electrospinning system because non-commercial polymers or specialty nanofibers (e.g. coaxial) are required. In this paper, a robust electrospinning system is proposed that is the first to overcome all major hurdles to make nanofiber toughening industrially viable. A new class of nanofibers based on biosourced polyamide 11 and its poly(ether-block-amide) co-polymers is used to deal with those shortcomings. The nanofibers have tuneable diameters down to 50 nm and cross-section morphologies ranging from circular to ribbon-shaped. The key to this work is the fundamental underpinning of the toughening effect using a broad range of interleaves with different mechanical and thermal properties, fiber diameters and fiber morphologies, all produced from the same bio-based base polymer. Generally, round and thin nanofibers performed better than larger and ribbon-like fibers. The relationship between the fiber morphology and the delamination performance is further underpinned using detailed analysis of the fracture surface. Ultimately, this results in a range of optimized nanofibrous veils capable of improving the delamination resistance considerably without suffering from the aforementioned drawbacks
Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods
Nanofibers functionalized by metal nanostructures and particles are exploited
as effective flexible substrates for SERS analysis. Their complex
three-dimensional structure may provide Raman signals enhanced by orders of
magnitude compared to untextured surfaces. Understanding the origin of such
improved performances is therefore very important for pushing nanofiber-based
analytical technologies to their upper limit. Here we report on polymer
nanofiber mats which can be exploited as substrates for enhancing the Raman
spectra of adsorbed probe molecules. The increased surface area and the
scattering of light in the nanofibrous system are individually analyzed as
mechanisms to enhance Raman scattering. The deposition of gold nanorods on the
fibers further amplifies Raman signals due to SERS. This study suggests that
Raman signals can be finely tuned in intensity and effectively enhanced in
nanofiber mats and arrays by properly tailoring the architecture, composition,
and light-scattering properties of the complex networks of filaments.Comment: 29 pages, 9 figures, 1 Tabl
The comparative study of nursing pads by electrospun cellulose acetate, polyethylene oxide and thermoplastic polyurethane nanofibers
This study summarizes the general information about nursing pads and novel electrospun nanofiber mats as potential component for nursing pads. It also compares electrospun thermoplastic polyurethane (TPU), cellulose acetate (CA) and polyethylene oxide (PEO) nanofibers with a polypropylene conventional disposable nursing pad (NP) in terms of hydrophilicity, breathability, air permeability and swelling properties. Nanofiber mats prepared by the electrospinning method have unique properties such as smooth surface, high specific surface area and high porosity with fine pores which will lead to improved wicking properties. These properties make nanofibers potential component for disposable nursing pads. Mean diameters of produced nanofibers were 284.39, 609.70 and 219.30 nm for CA, TPU and PEO, respectively. Water contact angle measurement revealed that these nanofibers show good wettability properties better than commercial nonwoven nursing mat and air permeability results revealed that these nanofibrous mats have considerably adequate permeability. Besides, water vapor permeability results showed these nanofibers still show good breathability despite their compact structure. © Published under licence by IOP Publishing Ltd
Electrospun polyvinyl alcohol/carbon dioxide modified polyethyleneimine composite nanofiber scaffolds
A novel biocompatible polyvinyl alcohol/carbon dioxide modified polyethyleneimine (PVA/PEI-CO2) composite nanofiber was fabricated by a green and facile protocol, which reduces the cytotoxicity of PEI through the surface modification of the PEI with CO2. The 13C NMR spectrum, elemental analysis, and TGA show that CO2 has been incorporated in the PEI surface resulting in a relatively stable structure. The resulting PVA/PEI-CO2 composite nanofibers have been characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), contact angle, and scanning electron microscopy (SEM). The results show that the average diameters of the nanofibers range from 265 ± 53 nm to 423 ± 80 nm. The cytotoxicity of PVA/PEI-CO2 composite nanofibers was assessed by cytotoxicity evaluation using the growth and cell proliferation of normal mice Schwann cells. SEM and the MTT assay demonstrated the promotion of cell growth and proliferation on the PVA/PEI-CO2 composite scaffold. It suggests that PEI-CO2 can have tremendous potential applications in biological material research
Novel Antibacterial and Toughened Carbon-Fibre/Epoxy Composites by the Incorporation of TiO2 Nanoparticles Modified Electrospun Nanofibre Veils
The inclusion of electrospun nanofiber veils was revealed as an effective method for enhancing the mechanical properties of fiber-reinforced epoxy resin composites. These veils will eventually allow the incorporation of nanomaterials not only for mechanical reinforcement but also in multifunctional applications. Therefore, this paper investigates the effect of electrospun nanofibrous veils made of polyamide 6 modified with TiO2 nanoparticles on the mechanical properties of a carbon-fiber/epoxy composite. The nanofibers were included in the carbon-fiber/epoxy composite as a single structure. The effect of positioning these veils in different composite positions was investigated. Compared to the reference, the use of unmodified and TiO2 modified veils increased the flexural stress at failure and the fracture toughness of composites. When TiO2 modified veils were incorporated, new antibacterial properties were achieved due to the photocatalytic properties of the veils, widening the application area of these composites.This research is funded by the ELKARTEK Programme, “ACTIMAT”, grupos de investigación del sistema universitario vasco (IT718-13), the Spanish government through the project TEC2015-63838-C3-1-R-OPTONANOSENS and from the Basque government through the project KK-2017/00089-µ4F
Near-field electrospinning of conjugated polymer light-emitting nanofibers
The authors report on the realization of ordered arrays of light-emitting
conjugated polymer nanofibers by near-field electrospinning. The fibers, made
by poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], have diameters of
few hundreds of nanometers and emission peaked at 560 nm. The observed
blue-shift compared to the emission from reference films is attributed to
different polymer packing in the nanostructures. Optical confinement in the
fibers is also analyzed through self-waveguided emission. These results open
interesting perspectives for realizing complex and ordered architectures by
light-emitting nanofibers, such as photonic circuits, and for the precise
positioning and integration of conjugated polymer fibers into light-emitting
devices.Comment: 11 pages, 6 figures Nanoscale, 201
Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions
In this study, liquid plasma treatment was used to improve the morphology of Poly-CaproLactone (PCL) NanoFibers (NFs), followed by performing a Dielectric Barrier Discharge (DBD) plasma surface modification to enhance the hydrophilicity of electrospun mats generated from plasma-modified PCL solutions. Cell interaction studies performed after 1 day and 7 days clearly revealed the highly increased cellular interactions on the double plasma-treated nanofibers compared to the pristine ones due to the combination of (1) a better NF morphology and (2) an increased surface hydrophilicity
Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency
To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats
- …
