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Abstract. In this study, liquid plasma treatment was used to improve the morphology of Poly-
ǫ-CaproLactone (PCL) NanoFibers (NFs), followed by performing a Dielectric Barrier Discharge
(DBD) plasma surface modification to enhance the hydrophilicity of electrospun mats generated
from plasma-modified PCL solutions. Cell interaction studies performed after 1 day and 7
days clearly revealed the highly increased cellular interactions on the double plasma-treated
nanofibers compared to the pristine ones due to the combination of (1) a better NF morphology
and (2) an increased surface hydrophilicity.

1. Introduction

The application of electrospun nanofibers (NFs) in tissue engineering is increasing owing to their
morphological similarity to the ExtraCellular Matrix (ECM) as most of the ECM proteins have
a fibrous structure with diameters in the nanometer or sub-micrometer range [1]. Nevertheless,
a great challenge in electrospinning is the preparation of a suitable polymer solution because the
system requires a balance of forces controlled by rheological behavior, conductivity and surface
tension. In many cases, researchers have used mixed solvents or even additives to make solu-
tions compatible to the electrospinning process [2]. However, within this work, a non-thermal
Atmospheric Pressure Plasma Jet (APPJ) directly generated in a polymer solution will be ex-
plored trying to improve the electrospinnability and final NF quality. The applied APPJ set-up
allows a close, intense contact between the plasma and the polymer solution which can lead to
a very efficient effect on the quality of the resultant fibers [3 - 5]. As PCL is a good polymeric
candidate for tissue engineering applications due to its numerous advantages such as good me-
chanical properties (highly elastic), chemical stability, excellent biocompatibility, research will
be focused on PCL in this study. Nonetheless, due to its highly hydrophobic structure, PCL
shows very poor cellular interactions. To cope with this problem, a Dielectric Barrier Discharge
(DBD) plasma surface treatment will also be performed on selected nanofibrous samples after
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the electrospinning process [6, 7]. For this purpose, PCL-NFs will be exposed to an argon
plasma in an effort to improve their hydrophilicity as this is known to positively affect cellular
interactions [8]. Plasma surface modification is a very attractive technique for this purpose as
it does not significantly change the scaffold morphology nor its mechanical properties [9, 10].
In this study, the PCL solution viscosity and conductivity will be monitored before and after
APPJ treatment, while Scanning Electron microscopy (SEM) will be used to evaluate the mor-
phology of the resultant NFs. Furthermore, PCL-NFs will also be seeded with HFFs (Human
foreskin fibroblasts) to perform cell adhesion tests after 1 and 7 days. For this purpose, 4 dif-
ferent samples will be examined: (1) untreated scaffolds, (2) scaffolds plasma-treated before
the electrospinning process, (3) scaffolds plasma-treated after the electrospinning process and
(4) scaffolds plasma-treated before and after the electrospinning step. Cell interactions on the
different samples will be assessed by fluorescence microscopy and SEM.

Figure 1. A schematic of the APPJ (left) to treat the PCL solution and the DBD (right) to
improve the hydrophilicity of the PCL nanofibers.

2. Experimental
PCL with a MW of 80000 g/mol, chloroform and N,N-Dimethylformamide were purchased from
Sigma-Aldrich and used without further purification. A solution of 5% of PCL in CHCl3+DMF
(ratio of 9:1 (w/w)) was prepared at room temperature by stirring for 2 hours. Half of the
obtained polymer solution was electrospun without any plasma pre-treatment step, while the
other half of the polymer solutions was treated with the atmospheric pressure plasma jet (APPJ)
schematically presented in Fig. 1 for 5 minutes making use of an argon flow rate of 0.9 slm
(standard liters per minute) and an applied voltage of 7.5 kV. Before and after the APPJ
modification step, the solution was characterized by measuring its conductivity and viscosity
making use of a Mettler Toledo FiveEasy conductivity meter equipped with an InLab 720 probe
and a Brookfield DV2T extra viscometer, respectively. After performing the APPJ modification
step, untreated and plasma-modified PCL solutions were immediately electrospun making use
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of a Nanospinner 24 electrospinning machine manufactured by Inovenso (Turkey). This machine
consists of a copper tip which is fed with the PCL polymer solution at a rate of 3.5 ml/h. A
high voltage of 25 kV is applied to this tip, while a grounded rotating drum (rotation speed: 100
rpm) placed at 20 cm from the tip acts as collector plate. Round cover glasses with a diameter
of 12 mm were fixed to the rotating drum and used as collecting substrates.
In a next step, the obtained PCL nanofibers were exposed to a DBD plasma schematically
presented in Fig. 1(right) to increase their hydrophilicity. The DBD treatments were performed
in argon at a discharge power of 1.5 W at medium pressure (50 kPa). A treatment time of 30
seconds was selected since this treatment duration was found to result in the highest possible
hydrophilicity combined with negligible changes in NF morphology. The morphology of the
PCL-NFs before and after APPJ liquid treatment and DBD plasma surface treatment were
characterized with a scanning electron microscope (SEM; JSM-6010 PLUS/LV; JEOL). SEM
images are acquired with an accelerating voltage of 7 kV, after coating the samples with a thin
layer of gold making use of a sputter coater (JFC-1300 autofine coater, JEOL). The average
diameter of nanofibers is calculated over 20 fibers using ImageJ (National Institutes of Health,
USA) analysis software.
In a final step, HFF cells were cultured on untreated, pre-electrospinning plasma treated, post-
electrospinning plasma treated and pre- and post-electrospinning plasma treated NFs after
exposure to UV light for 30 minutes as a sterilization step. For this purpose, a density of 40.000
cells/500 µl of culture medium per scaffold was used. The cell seeded scaffolds were incubated
at 37◦C under 5% CO2 atmosphere for 1 and 7 days and Tissue Culture PolyStyrene (TCPS)
was used as positive control. Live/dead cell staining was applied to evaluate cell viability:
the cell seeded scaffolds were incubated in 2 µl (1 mg/ml) of calcein-AM and 2 µl (1mg/ml)
propidium iodide in 1 ml phosphate buffered saline (PBS), after which they were imaged with
a fluorescence microscope (Olympus; IX 81) with appropriate filters [8]. The morphology of
the HFF cells on the scaffolds after 1 and 7 days was also evaluated by SEM after performing
a cell fixation and dehydration step. The preparation procedure included cell washing with
PBS followed by fixation with 2.5% glutaraldehyde in 0.1 M cacodylate buffer for 1 hour. The
cells were subsequently dehydrated by immersion through increasing ethanol series (50%, 70%,
85%, 95% and 100%) for 10 min. Afterwards, samples were immersed in hexamethyldisilazane
(HDMS) for 10 min.

3. Results and discussion
3.1. APPJ treatment of the PCL polymer solution: solution properties and PCL-NF
morphology
The conductivity and viscosity of the PCL polymer solution before and after APPJ treatment
can be found in Table 1: from reported values it is evident that plasma exposure can strongly
increase these parameters. SEM images of electrospun PCL-NFs generated from untreated and
plasma treated PCL solutions are also displayed in Fig. 2. This figure clearly shows that the
nanofibrous scaffold obtained from the untreated polymer solution presents a high density of
beads (on average 2000 beads per mm

2) and an average fiber diameter of approximately 300 nm
(high standard deviation due to the presence of beads). After 5 minutes of treatment with the
plasma jet, the beads however completely disappear resulting in a network of elongated, uniform
fibers with an average fiber diameter of approximately 500 nm.
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Table 1. Polymer solution characteristics before and after APPJ treatment

Untreated APPJ for 5 min

Conductivity (µS)/cm 0.25± 0.05 5.1± 0.1

Viscosity (cP) 85± 5 320± 5

Fibers diameter (nm) 300± 150 500± 50

Figure 2. SEM images of nanofibers generated from A) an untreated PCL solution and B) a
PCL solution treated with an APPJ for 5 minutes.

As mentioned before, plasma treatment is a very useful method to modify the chemical
properties of a polymer surface. Plasma incorporated polar chemical groups are known to
increase the surface energy of polymers and thus increase the surface wettability. The untreated
nanofibers have a contact angle of approximately 127◦ which decrease to values of 55◦, 64◦

and 95◦ for the nanofibers plasma treated with combined plasma treatments, DBD treated and
APPJ treated respectively.

3.2. Live/dead immune microscopy and cell morphology using SEM
The cellular interactions on differently prepared PCL scaffolds have also been investigated 1
day and 7 days after cell seeding and the images obtained by SEM and fluorescent microscopy
are presented in Figs. 3 and 4 respectively. These images clearly demonstrate the differences
in cellular interactions between untreated, APPJ treated, DBD treated and combined plasma
treatments on PCL-NFs. On untreated samples, after 1 day of cell seeding, mostly round and
thus poorly attached cells can be observed. In addition, after 7 days of cell seeding, most of the
present cells still show a round morphology while also quite a few cells appear to be dead (red
color in Fig. 4). Cellular interactions on untreated samples are thus very poor. On samples
which have been treated with the DBD, one can see that after 1 day and 7 days of cell seeding,
more live cells are present on the samples and the cells adhere better to the sample surface, which
can be evidenced from their spread morphology. These better cellular interactions compared
to the untreated sample is most likely due to the enhanced hydrophilicity, which is known to
positively affect cell-material interactions. When looking at the sample which has been treated
with the APPJ alone, one can see that also in this case, cells nicely adhere to the sample as
they present an elongated morphology, which is most likely due to the presence of uniform fibers
instead of beads. However, the best cell-material interactions can be observed on the combined
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APPJ and DBD plasma-treated samples: in this case, a high number of nicely elongated cells
can be observed on the surface, even after only 1 day after cell seeding. After 7 days, a layer of
cells is almost completely covering the nanofibers (as can be nicely observed in Fig. 3), which
was not at all the case for the other investigated samples. These enhanced cellular interactions
compared to the APPJ treated samples can again be related to the enhanced hydrophilicity
upon DBD treatment. One can therefore conclude that a double plasma treatment is able to
strongly enhance the cellular interactions on PCL nanofibers.

Figure 3. SEM images. First row: after 1 day, A) untreated samples, B) fibers with a DBD
plasma treatment, C) APPJ plasma treatment, D) APPJ+DBD plasma treatment. Second row:
after 7 days of seeding, E) untreated, F) DBD treatment, G) APPJ treatment, H) APPJ+DBD
plasma treatment.

Figure 4. Fluorescence microscopy images. First row: after 1 day, A) untreated samples,
B) fibers with a DBD plasma treatment, C) APPJ plasma treatment, D) APPJ+DBD plasma
treatment. Second row: after 7 days of seeding, E) untreated, F) DBD treatment, G) APPJ
treatment, H) APPJ+DBD plasma treatment.
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4. Conclusion
After electrospinning an untreated PCL solution, the generated NFs presented a large amount
of beads. It was however found that in the liquid plasma-treated fiber mesh, beads completely
disappeared leading to more uniform fibers in diameter and in morphology. However, the resul-
tant, elongated NFs still showed to have a strong hydrophobic behavior which is unwanted in
the foreseen biomedical applications. DBD plasma treatment in argon of the NFs is therefore
also performed to significantly improve their hydrophilicity. Cell studies revealed that HFFs
cultured on PCL-NFs present a considerably higher cell adhesion and proliferation on combined
APPJ and DBD plasma-treated NFs compared to pristine NFs. These results suggest that dou-
ble plasma-modified NFs may have a large potential for the efficient replacement of damaged
tissues in the future.
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