4,989 research outputs found

    Informational Inequality: How High Frequency Traders Use Premier Access to Information to Prey on Institutional Investors

    Get PDF
    In recent months, Wall Street has been whipped into a frenzy following the March 31st release of Michael Lewis’ book “Flash Boys.” In the book, Lewis characterizes the stock market as being rigged, which has institutional investors and outside observers alike demanding some sort of SEC action. The vast majority of this criticism is aimed at high-frequency traders, who use complex computer algorithms to execute trades several times faster than the blink of an eye. One of the many complaints against high-frequency traders is over parasitic trading practices, such as front-running. Front-running, in the era of high-frequency trading, is best defined as using the knowledge of a large impending trade to take a favorable position in the market before that trade is executed. Put simply, these traders are able to jump in front of a trade before it can be completed. This Note explains how high-frequency traders are able to front-run trades using superior access to information, and examines several proposed SEC responses

    Solar neutrinos, helioseismology and the solar internal dynamics

    Full text link
    Neutrinos are fundamental particles ubiquitous in the Universe. Their properties remain elusive despite more than 50 years of intense research activity. In this review we remind the reader of the noticeable properties of these particles and of the stakes of the solar neutrino puzzle. The Standard Solar Model triggered persistent efforts in fundamental Physics to predict the solar neutrino fluxes, and its constantly evolving predictions have been regularly compared to the detected neutrino signals. Anticipating that this standard model could not reproduce the internal solar dynamics, a SEismic Solar Model was developed which enriched theoretical neutrino flux predictions with in situ observation of acoustic waves propagating in the Sun. This review reminds the historical steps, from the pioneering Homestake detection, the GALLEX- SAGE captures of the first pp neutrinos and emphasizes the importance of the Superkamiokande and SNO detectors to demonstrate that the solar-emitted electronic neutrinos are partially transformed into other neutrino flavors before reaching the Earth. The success of BOREXINO in detecting the 7 Be neutrino signal justifies the building of a new generation of detectors to measure the entire solar neutrino spectrum. A coherent picture emerged from neutrino physics and helioseismology. Today, new paradigms take shape: determining the masses of neutrinos and the research on the Sun is focusing on the dynamical aspects and on signature of dark matter. The third part of the review is dedicated to this prospect. The understanding of the crucial role of both rotation and magnetism in solar physics benefit from SoHO, SDO, and PICARD space observations. For now, the particle and stellar challenges seem decoupled, but this is only a superficial appearance. The development of asteroseismology shows the far-reaching impact of Neutrino and Stellar Astronomy.Comment: 60 pages, 12 figures Invited review in press in Report on Progress in Physic

    Dark Matter investigation by DAMA at Gran Sasso

    Full text link
    Experimental observations and theoretical arguments at Galaxy and larger scales have suggested that a large fraction of the Universe is composed by Dark Matter particles. This has motivated the DAMA experimental efforts to investigate the presence of such particles in the galactic halo by exploiting a model independent signature and very highly radiopure set-ups deep underground. Few introductory arguments are summarized before presenting a review of the present model independent positive results obtained by the DAMA/NaI and DAMA/LIBRA set-ups at the Gran Sasso National Laboratory of the INFN. Implications and model dependent comparisons with other different kinds of results will be shortly addressed. Some arguments put forward in literature will be confuted.Comment: review article, 71 pages, 25 figures, 8 tables; v2: minor modifications. In publication on the International Journal of Modern Physics

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    IT support of the Judiciary: Australia, Singapore, Venezuela, Norway, The Netherlands and Italy

    Get PDF

    TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider

    Full text link
    The TESLA Technical Design Report Part III: Physics at an e+e- Linear ColliderComment: 192 pages, 131 figures. Some figures have reduced quality. Full quality figures can be obtained from http://tesla.desy.de/tdr. Editors - R.-D. Heuer, D.J. Miller, F. Richard, P.M. Zerwa

    A formal approach for network security policy validation

    Get PDF
    Network security is a crucial aspect for administrators due to increasing network size and number of functions and controls (e.g.firewall, DPI, parental control). Errors in configuring security controls may result in serious security breaches and vulnerabilities (e.g. blocking legitimate traffic or permitting unwanted traffic) that must be absolutely detected and addressed. This work proposes a novel approach for validating network policy enforcement, by checking the network status and configuration, and detection of the possible causes in case of misconfiguration or software attacks. Our contribution exploits formal methods to model and validate the packet processing and forwarding behaviour of security controls, and to validate the trustworthiness of the controls by using remote attestation. A prototype implementation of this approach is proposed to validate different scenarios
    corecore