1,539,296 research outputs found
System status display information
The system Status Display is an electronic display system which provides the flight crew with enhanced capabilities for monitoring and managing aircraft systems. Guidelines for the design of the electronic system displays were established. The technical approach involved the application of a system engineering approach to the design of candidate displays and the evaluation of a Hernative concepts by part-task simulation. The system engineering and selection of candidate displays are covered
Substrate-induced band gap opening in epitaxial graphene
Graphene has shown great application potentials as the host material for next
generation electronic devices. However, despite its intriguing properties, one
of the biggest hurdles for graphene to be useful as an electronic material is
its lacking of an energy gap in the electronic spectra. This, for example,
prevents the use of graphene in making transistors. Although several proposals
have been made to open a gap in graphene's electronic spectra, they all require
complex engineering of the graphene layer. Here we show that when graphene is
epitaxially grown on the SiC substrate, a gap of ~ 0.26 is produced. This gap
decreases as the sample thickness increases and eventually approaches zero when
the number of layers exceeds four. We propose that the origin of this gap is
the breaking of sublattice symmetry owing to the graphene-substrate
interaction. We believe our results highlight a promising direction for band
gap engineering of graphene.Comment: 10 pages, 4 figures; updated reference
Enhancing thermoelectric figure-of-merit by low-dimensional electrical transport in phonon-glass crystals
Low-dimensional electronic and glassy phononic transport are two important
ingredients of highly-efficient thermoelectric material, from which two
branches of the thermoelectric research emerge. One focuses on controlling
electronic transport in the low dimension, while the other on multiscale phonon
engineering in the bulk. Recent work has benefited much from combining these
two approaches, e.g., phonon engineering in low-dimensional materials. Here, we
propose to employ the low-dimensional electronic structure in bulk phonon-glass
crystal as an alternative way to increase the thermoelectric efficiency.
Through first-principles electronic structure calculation and classical
molecular dynamics simulation, we show that the - stacking
Bis-Dithienothiophene molecular crystal is a natural candidate for such an
approach. This is determined by the nature of its chemical bonding. Without any
optimization of the material parameter, we obtain a maximum room-temperature
figure of merit, , of at optimal doping, thus validating our idea.Comment: Nano Lett.201
Boundary condition and geometry engineering in electronic hydrodynamics
We analyze the role of boundary geometry in viscous electronic hydrodynamics.
We address the twin questions of how boundary geometry impacts flow profiles,
and how one can engineer boundary conditions -- in particular the effective
slip parameter -- to manipulate the flow in a controlled way. We first propose
a micropatterned geometry involving finned barriers, for which we show by an
explicit solution that one can obtain effectively no-slip boundary conditions
regardless of the detailed microscopic nature of the channel surface. Next we
analyse the role of mesoscopic boundary curvature on the effective slip length,
in particular its impact on the Gurzhi effect. Finally we investigate a
hydrodynamic flow through a circular junction, providing a solution, which
suggests an experimental set-up for determining the slip parameter. We find
that its transport properties differ qualitatively from the case of ballistic
conduction, and thus presents a promising setting for distinguishing the two.Comment: 9 pages, 15 figures, 5 appendice
Research Laboratory of Electronics Quarterly progress report, period ending 28 Feb. 1967
General physics, plasma dynamics, engineering, and communication sciences programs at Research Laboratory of Electronic
Tuning the electronic transport properties of graphene through functionalisation with fluorine
Engineering the electronic properties of graphene has triggered great
interest for potential applications in electronics and opto-electronics. Here
we demonstrate the possibility to tune the electronic transport properties of
graphene monolayers and multilayers by functionalisation with fluorine. We show
that by adjusting the fluorine content different electronic transport regimes
can be accessed. For monolayer samples, with increasing the fluorine content,
we observe a transition from electronic transport through Mott variable range
hopping in two dimensions to Efros - Shklovskii variable range hopping.
Multilayer fluorinated graphene with high concentration of fluorine show
two-dimensional Mott variable range hopping transport, whereas CF0.28
multilayer flakes have a band gap of 0.25eV and exhibit thermally activated
transport. Our experimental findings demonstrate that the ability to control
the degree of functionalisation of graphene is instrumental to engineer
different electronic properties in graphene materials.Comment: 6 pages, 5 figure
- …
