386 research outputs found

    Electromagnetically Induced Transparency and Slow Light with Optomechanics

    Get PDF
    Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nano-fabrication techniques. To date, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to strong nonlinear effects such as Electromagnetically Induced Transparency (EIT) and parametric normal-mode splitting. In atomic systems, seminal experiments and proposals to slow and stop the propagation of light, and their applicability to modern optical networks, and future quantum networks, have thrust EIT to the forefront of experimental study during the last two decades. In a similar fashion, here we use the optomechanical nonlinearity to control the velocity of light via engineered photon-phonon interactions. Our results demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal device, fabricated by simply etching holes into a thin film of silicon (Si). At low temperature (8.7 K), we show an optically-tunable delay of 50 ns with near-unity optical transparency, and superluminal light with a 1.4 microseconds signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature and in the analogous regime of Electromagnetically Induced Absorption (EIA) show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.Comment: 15 pages, 9 figure

    Optomechanically induced transparency

    Full text link
    Coherent interaction of laser radiation with multilevel atoms and molecules can lead to quantum interference in the electronic excitation pathways. A prominent example observed in atomic three-level-systems is the phenomenon of electromagnetically induced transparency (EIT), in which a control laser induces a narrow spectral transparency window for a weak probe laser beam. The concomitant rapid variation of the refractive index in this spectral window can give rise to dramatic reduction of the group velocity of a propagating pulse of probe light. Dynamic control of EIT via the control laser enables even a complete stop, that is, storage, of probe light pulses in the atomic medium. Here, we demonstrate optomechanically induced transparency (OMIT)--formally equivalent to EIT--in a cavity optomechanical system operating in the resolved sideband regime. A control laser tuned to the lower motional sideband of the cavity resonance induces a dipole-like interaction of optical and mechanical degrees of freedom. Under these conditions, the destructive interference of excitation pathways for an intracavity probe field gives rise to a window of transparency when a two-photon resonance condition is met. As a salient feature of EIT, the power of the control laser determines the width and depth of the probe transparency window. OMIT could therefore provide a new approach for delaying, slowing and storing light pulses in long-lived mechanical excitations of optomechanical systems, whose optical and mechanical properties can be tailored in almost arbitrary ways in the micro- and nano-optomechanical platforms developed to date
    corecore