317 research outputs found

    Entanglement and Disentanglement in Circuit QED Architectures

    Full text link
    We propose a protocol for creating entanglement within a dissipative circuit QED network architecture that consists of two electromagnetic circuits (cavities) and two superconducting qubits. The system interacts with a quantum environment, giving rise to decoherence and dissipation. We discuss the preparation of two separate entangled cavity-qubit states via Landau-Zener sweeps, after which the cavities interact via a tunable "quantum switch" which is realized with an ancilla qubit. Moreover, we discuss the decay of the resulting entangled two-cavity state due to the influence of the environment, where we focus on the entanglement decay.Comment: 7 pages, 5 figure

    Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors

    Full text link
    We show that any pair of real symmetric tensors \BGve and \BGm can be realized as the effective electric permittivity and effective magnetic permeability of a metamaterial at a given fixed frequency. The construction starts with two extremely low loss metamaterials, with arbitrarily small microstructure, whose existence is ensured by the work of Bouchitt{\'e} and Bourel and Bouchitt\'e and Schweizer, one having at the given frequency a permittivity tensor with exactly one negative eigenvalue, and a positive permeability tensor, and the other having a positive permittivity tensor, and a permeability tensor having exactly one negative eigenvalue. To achieve the desired effective properties these materials are laminated together in a hierarchical multiple rank laminate structure, with widely separated length scales, and varying directions of lamination, but with the largest length scale still much shorter than the wavelengths and attenuation lengths in the macroscopic effective medium.Comment: 12 pages, no figure

    Point Contacts in Modeling Conducting 2D Planar Structures

    Get PDF
    Use of an optimization algorithm to improve performance of antennas and electromagnetic structures usually ends up in planar unusual shapes. Using rectangular conducting elements the proposed structures sometimes have connections with only one single point in common between two neighboring areas. The single point connections (point crossing) can affect the electromagnetic performance of the structure. In this letter, we illustrate the influence of point crossing on dipole and loop antennas using MoM, FDTD, and FEM solvers. Current distribution, radiation pattern, and impedance properties for different junctions are different. These solvers do not agree in the modeling of the point crossing junctions which is a warning about uncertainty in using such junctions. However, solvers agree that a negligible change in the junction would significantly change the antenna performance. We propose that one should consider both bridging and chamfering of the conflicting cells to find optimized structures. This reduces the simulation time by 40% using FDTD modeling, however no significant reduction is obtained using the MoM and FEM methods.Comment: 4 pages, 10 figures, 1 table, accepted for publication in IEEE Antennas Wireless Propag. Let
    • 

    corecore