566 research outputs found

    Shape recognition and classification in electro-sensing

    Full text link
    This paper aims at advancing the field of electro-sensing. It exhibits the physical mechanism underlying shape perception for weakly electric fish. These fish orient themselves at night in complete darkness by employing their active electrolocation system. They generate a stable, high-frequency, weak electric field and perceive the transdermal potential modulations caused by a nearby target with different admittivity than the surrounding water. In this paper, we explain how weakly electric fish might identify and classify a target, knowing by advance that the latter belongs to a certain collection of shapes. Our model of the weakly electric fish relies on differential imaging, i.e., by forming an image from the perturbations of the field due to targets, and physics-based classification. The electric fish would first locate the target using a specific location search algorithm. Then it could extract, from the perturbations of the electric field, generalized (or high-order) polarization tensors of the target. Computing, from the extracted features, invariants under rigid motions and scaling yields shape descriptors. The weakly electric fish might classify a target by comparing its invariants with those of a set of learned shapes. On the other hand, when measurements are taken at multiple frequencies, the fish might exploit the shifts and use the spectral content of the generalized polarization tensors to dramatically improve the stability with respect to measurement noise of the classification procedure in electro-sensing. Surprisingly, it turns out that the first-order polarization tensor at multiple frequencies could be enough for the purpose of classification. A procedure to eliminate the background field in the case where the permittivity of the surrounding medium can be neglected, and hence improve further the stability of the classification process, is also discussed.Comment: 10 pages, 15 figure

    Electrocommunication for weakly electric fish

    Full text link
    This paper addresses the problem of the electro-communication for weakly electric fish. In particular we aim at sheding light on how the fish circumvent the jamming issue for both electro-communication and active electro-sensing. A real-time tracking algorithm is presented

    Modeling active electrolocation in weakly electric fish

    Full text link
    In this paper, we provide a mathematical model for the electrolocation in weakly electric fishes. We first investigate the forward complex conductivity problem and derive the approximate boundary conditions on the skin of the fish. Then we provide a dipole approximation for small targets away from the fish. Based on this approximation, we obtain a non-iterative location search algorithm using multi-frequency measurements. We present numerical experiments to illustrate the performance and the stability of the proposed multi-frequency location search algorithm. Finally, in the case of disk- and ellipse-shaped targets, we provide a method to reconstruct separately the conductivity, the permittivity, and the size of the targets from multi-frequency measurements.Comment: 37 pages, 11 figure

    First results on a sensor bio-inspired by electric fish

    Get PDF
    This article presents the first results of a work which aims at designing an active sensor inspired by the electric fish. Its interest is its potential for robotics underwater navigation and exploration tasks in conditions where vision and sonar would meet difficulty. It could also be used as a complementary omnidirectional, short range sense to vision and sonar. Combined with a well defined engine geometry, this sensor can be modeled analytically. In this article, we focus on a particular measurement mode where one electrode of the sensor acts as a current emitter and the others as current receivers. In spite of the high sensitivity required by electric sense, the first results show that we can obtain a detection range of the order of the sensor length, which suggests that this sensor principle could be used in future for robotics obstacle avoidance

    Underwater robot navigation around a sphere using electrolocation sense and Kalman filter

    Get PDF
    International audienceThe aim of this paper is to perform the navigation of an underwater robot equipped with a sensor using the electric sense. The robot navigates in an unbounded environment in presence of spheres. This sensor is inspired of some species of electric fish. A model of this sensor composed of n spherical electrodes is established. The variations of the current due to the presence of the sphere is related to the model of Rasnow [3]. Unscented Kalman Filter is used to localize the robot with respect to the sphere and to estimate the size of the sphere. We show that bio-inspired motions improve the detection of the spheres. We illustrate the efficiency of the method in two cases: a two electrodes sensor and a four electrodes sensor

    Fish Geometry and Electric Organ Discharge Determine Functional Organization of the Electrosensory Epithelium

    Get PDF
    Active electroreception in Gymnotus omarorum is a sensory modality that perceives the changes that nearby objects cause in a self generated electric field. The field is emitted as repetitive stereotyped pulses that stimulate skin electroreceptors. Differently from mormyriformes electric fish, gymnotiformes have an electric organ distributed along a large portion of the body, which fires sequentially. As a consequence shape and amplitude of both, the electric field generated and the image of objects, change during the electric pulse. To study how G. omarorum constructs a perceptual representation, we developed a computational model that allows the determination of the self-generated field and the electric image. We verify and use the model as a tool to explore image formation in diverse experimental circumstances. We show how the electric images of objects change in shape as a function of time and position, relative to the fish's body. We propose a theoretical framework about the organization of the different perceptive tasks made by electroreception: 1) At the head region, where the electrosensory mosaic presents an electric fovea, the field polarizing nearby objects is coherent and collimated. This favors the high resolution sampling of images of small objects and perception of electric color. Besides, the high sensitivity of the fovea allows the detection and tracking of large faraway objects in rostral regions. 2) In the trunk and tail region a multiplicity of sources illuminate different regions of the object, allowing the characterization of the shape and position of a large object. In this region, electroreceptors are of a unique type and capacitive detection should be based in the pattern of the afferents response. 3) Far from the fish, active electroreception is not possible but the collimated field is suitable to be used for electrocommunication and detection of large objects at the sides and caudally
    • …
    corecore