84 research outputs found

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.0∗10−137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.7∗10−157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure

    Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators

    Get PDF
    Recent advances in nonlinear optics have revolutionized integrated photonics, providing on-chip solutions to a wide range of new applications. Currently, state of the art integrated nonlinear photonic devices are mainly based on dielectric material platforms, such as Si₃N₄ and SiO₂. While semiconductor materials feature much higher nonlinear coefficients and convenience in active integration, they have suffered from high waveguide losses that prevent the realization of efficient nonlinear processes on-chip. Here, we challenge this status quo and demonstrate a low loss AlGaAs-on-insulator platform with anomalous dispersion and quality (Q) factors beyond 1.5 × 10⁶. Such a high quality factor, combined with high nonlinear coefficient and small mode volume, enabled us to demonstrate a Kerr frequency comb threshold of only ∌36 ”W in a resonator with a 1 THz free spectral range, ∌100 times lower compared to that in previous semiconductor platforms. Moreover, combs with broad spans (>250 nm) have been generated with a pump power of ∌300 ”W, which is lower than the threshold power of state-of the-art dielectric micro combs. A soliton-step transition has also been observed for the first time in an AlGaAs resonator

    Microresonator-referenced soliton microcombs with zeptosecond-level timing noise

    Full text link
    Optical frequency division relies on optical frequency combs to coherently translate ultra-stable optical frequency references to the microwave domain. This technology has enabled microwave synthesis with ultralow timing noise, but the required instruments are too bulky for real-world applications. Here, we develop a compact optical frequency division system using microresonator-based frequency references and comb generators. The soliton microcomb formed in an integrated Si3_3N4_4 microresonator is stabilized to two lasers referenced to an ultrahigh-QQ MgF2_2 microresonator. Photodetection of the soliton pulse train produces 25 GHz microwaves with absolute phase noise of -141 dBc/Hz (547 zs Hz−1/2^{-1/2}) at 10 kHz offset frequency. The synthesized microwaves are tested as local oscillators in jammed communication channels, resulting in improved fidelity compared with those derived from electronic oscillators. Our work demonstrates unprecedented coherence in miniature microwave oscillators, providing key building blocks for next-generation timekeeping, navigation, and satellite communication systems.Comment: 8 pages, 7 figures and table

    Integrated turnkey soliton microcombs operated at CMOS frequencies

    Get PDF
    While soliton microcombs offer the potential for integration of powerful frequency metrology and precision spectroscopy systems, their operation requires complex startup and feedback protocols that necessitate difficult-to-integrate optical and electrical components. Moreover, CMOS-rate microcombs, required in nearly all comb systems, have resisted integration because of their power requirements. Here, a regime for turnkey operation of soliton microcombs co-integrated with a pump laser is demonstrated and theoretically explained. Significantly, a new operating point is shown to appear from which solitons are generated through binary turn-on and turn-off of the pump laser, thereby eliminating all photonic/electronic control circuitry. These features are combined with high-Q Si3N4Si_3N_4 resonators to fully integrate into a butterfly package microcombs with CMOS frequencies as low as 15 GHz, offering compelling advantages for high-volume production.Comment: Boqiang Shen, Lin Chang, Junqiu Liu, Heming Wang and Qi-Fan Yang contributed equally to this wor

    Stability of laser cavity-solitons for metrological applications

    Get PDF
    Laser cavity-solitons can appear in systems comprised of a nonlinear microcavity nested within an amplifying fiber loop. These states are robust and self-emergent and constitute an attractive class of solitons that are highly suitable for microcomb generation. Here, we present a detailed study of the free-running stability properties of the carrier frequency and repetition rate of single solitons, which are the most suitable states for developing robust ultrafast and high repetition rate comb sources. We achieve free-running fractional stability on both optical carrier and repetition rate (i.e., 48.9 GHz) frequencies on the order of 10^-9 for a 1 s gate time. The repetition rate results compare well with the performance of state-of-the-art (externally driven) microcomb sources, and the carrier frequency stability is in the range of performance typical of modern free-running fiber lasers. Finally, we show that these quantities can be controlled by modulating the laser pump current and the cavity length, providing a path for active locking and long-term stabilization

    Electrically empowered microcomb laser

    Full text link
    Optical frequency comb underpins a wide range of applications from communication, metrology, to sensing. Its development on a chip-scale platform -- so called soliton microcomb -- provides a promising path towards system miniaturization and functionality integration via photonic integrated circuit (PIC) technology. Although extensively explored in recent years, challenges remain in key aspects of microcomb such as complex soliton initialization, high threshold, low power efficiency, and limited comb reconfigurability. Here we present an on-chip laser that directly outputs microcomb and resolves all these challenges, with a distinctive mechanism created from synergetic interaction among resonant electro-optic effect, optical Kerr effect, and optical gain inside the laser cavity. Realized with integration between a III-V gain chip and a thin-film lithium niobate (TFLN) PIC, the laser is able to directly emit mode-locked microcomb on demand with robust turnkey operation inherently built in, with individual comb linewidth down to 600 Hz, whole-comb frequency tuning rate exceeding 2.4×1017\rm 2.4\times10^{17} Hz/s, and 100% utilization of optical power fully contributing to comb generation. The demonstrated approach unifies architecture and operation simplicity, high-speed reconfigurability, and multifunctional capability enabled by TFLN PIC, opening up a great avenue towards on-demand generation of mode-locked microcomb that is expected to have profound impact on broad applications
    • 

    corecore