2 research outputs found

    Micro- and nano-devices for electrochemical sensing

    Get PDF
    Electrode miniaturization has profoundly revolutionized the field of electrochemical sensing, opening up unprecedented opportunities for probing biological events with a high spatial and temporal resolution, integrating electrochemical systems with microfluidics, and designing arrays for multiplexed sensing. Several technological issues posed by the desire for downsizing have been addressed so far, leading to micrometric and nanometric sensing systems with different degrees of maturity. However, there is still an endless margin for researchers to improve current strategies and cope with demanding sensing fields, such as lab-on-a-chip devices and multi-array sensors, brain chemistry, and cell monitoring. In this review, we present current trends in the design of micro-/nano-electrochemical sensors and cutting-edge applications reported in the last 10 years. Micro- and nanosensors are divided into four categories depending on the transduction mechanism, e.g., amperometric, impedimetric, potentiometric, and transistor-based, to best guide the reader through the different detection strategies and highlight major advancements as well as still unaddressed demands in electrochemical sensing

    Electrical Characteristics and pH Response of a Parylene-H Sensing Membrane in a Si-Nanonet Ion-Sensitive Field-Effect Transistor

    No full text
    We report the electrical characteristics and pH responses of a Si-nanonet ion-sensitive field-effect transistor with ultra-thin parylene-H as a gate sensing membrane. The fabricated device shows excellent DC characteristics: a low subthreshold swing of 85 mV/dec, a high current on/off ratio of ~107 and a low gate leakage current of ~10−10 A. The low interface trap density of 1.04 × 1012 cm−2 and high field-effect mobility of 510 cm2V−1s−1 were obtained. The pH responses of the devices were evaluated in various pH buffer solutions. A high pH sensitivity of 48.1 ± 0.5 mV/pH with a device-to-device variation of ~6.1% was achieved. From the low-frequency noise characterization, the signal-to-noise ratio was extracted as high as ~3400 A/A with the lowest noise equivalent pH value of ~0.002 pH. These excellent intrinsic electrical and pH sensing performances suggest that parylene-H can be promising as a sensing membrane in an ISFET-based biosensor platform
    corecore