174,615 research outputs found
Application of Memristors in Microwave Passive Circuits
The recent implementation of the fourth fundamental electric circuit element, the memristor, opened new vistas in many fields of engineering applications. In this paper, we explore several RF/microwave passive circuits that might benefit from the memristor salient characteristics. We consider a power divider, coupled resonator bandpass filters, and a low-reflection quasi-Gaussian lowpass filter with lossy elements. We utilize memristors as configurable linear resistors and we propose memristor-based bandpass filters that feature suppression of parasitic frequency pass bands and widening of the desired rejection band. The simulations are performed in the time domain, using LTspice, and the RF/microwave circuits under consideration are modeled by ideal elements available in LTspice
Low Power Superconducting Microwave Applications and Microwave Microscopy
We briefly review some non-accelerator high-frequency applications of
superconductors. These include the use of high-Tc superconductors in front-end
band-pass filters in cellular telephone base stations, the High Temperature
Superconductor Space Experiment, and high-speed digital electronics. We also
present an overview of our work on a novel form of near-field scanning
microscopy at microwave frequencies. This form of microscopy can be used to
investigate the microwave properties of metals and dielectrics on length scales
as small as 1 mm. With this microscope we have demonstrated quantitative
imaging of sheet resistance and topography at microwave frequencies. An
examination of the local microwave response of the surface of a heat-treated
bulk Nb sample is also presented.Comment: 11 pages, including 6 figures. Presented at the Eight Workshop on RF
Superconductivity. To appear in Particle Accelerator
New trends in active filters for improving power quality
Since their basic compensation principles were proposed around 1970, active filters have been studied by many researchers and engineers aiming to put them into practical applications. Shunt active filters for harmonic compensation with or without reactive power compensation, flicker compensation or voltage regulation have been put on a commercial base in Japan, and their rating or capacity has ranged from 50 kVA to 60 MVA at present. In near future, the term of active filters will cover a much wider sense than that of active filters in the 1970s did. The function of active filters will be expanded from voltage flicker compensation or voltage regulation into power quality improvement for power distribution systems as the capacity of active filters becomes larger. This paper describes present states of the active filters based on state-of-the-art power electronics technology, and their future prospects toward the 21st century, including the personal view and expectation of the author</p
Signal specific electric potential sensors for operation in noisy environments
Limitations on the performance of electric potential sensors are due to saturation caused by environmental electromagnetic noise. The work described involves tailoring the response of the sensors to reject the main components of the noise, thereby enhancing both the effective dynamic range and signal to noise. We show that by using real-time analogue signal processing it is possible to detect a human heartbeat at a distance of 40 cm from the front of a subject in an unshielded laboratory. This result has significant implications both for security sensing and biometric measurements in addition to the more obvious safety related applications
Efficient integral equation formulation for inductive waveguide components with posts touching the waveguide walls
In this paper a surface integral equation technique is employed for the analysis of inductive waveguide problems containing metallic or dielectric objects of arbitrary shape, focusing on the case where these objects are connected to the waveguide walls. Using the extinction theorem, the main problem is split into two problems. In the first one the parallel plate waveguide Green’s functions are used. Because of the choice of these functions, the side of the object touching the waveguide wall is not considered for discretization in a method of moments analysis. The second problem is applied inside the dielectric object, and uses the free space Green’s functions. It is shown that an additional spatial image is needed to impose the proper boundary conditions for the fields on the side touching the waveguide wall in the original problem. Results show the importance of including this additional image in the formulation for the correct behavior of the fields. With the proposed technique, the paper explores some alternatives for designing specific filter responses using dielectric posts inside cavity filters. Comparisons with a commercial finite elements tool demonstrate the accuracy of the proposed integral equation formulation.This work has been developed with support from the Spanish National Project (CICYT) with Ref TEC2004-04313-C02-02/TCM, and the Regional Seneca Project with Ref 02972/PI/05
Optimal design of single-tuned passive filters using response surface methodology
This paper presents an approach based on Response Surface Methodology (RSM) to find the optimal parameters of the single-tuned passive filters for harmonic mitigation. The main advantages of RSM can be underlined as easy implementation and effective computation. Using RSM, the single-tuned harmonic filter is designed to minimize voltage total harmonic distortion (THDV) and current total harmonic distortion (THDI). Power factor (PF) is also incorporated in the design procedure as a constraint. To show the validity of the proposed approach, RSM and Classical Direct Search (Grid Search) methods are evaluated for a typical industrial power system
Gap and channelled plasmons in tapered grooves: a review
Tapered metallic grooves have been shown to support plasmons --
electromagnetically coupled oscillations of free electrons at metal-dielectric
interfaces -- across a variety of configurations and V-like profiles. Such
plasmons may be divided into two categories: gap-surface plasmons (GSPs) that
are confined laterally between the tapered groove sidewalls and propagate
either along the groove axis or normal to the planar surface, and channelled
plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate
exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment of
unique properties that are highly suited to a broad range of cutting-edge
nanoplasmonic technologies, including ultracompact photonic circuits,
quantum-optics components, enhanced lab-on-a-chip devices, efficient
light-absorbing surfaces and advanced optical filters, while additionally
affording a niche platform to explore the fundamental science of plasmon
excitations and their interactions. In this Review, we provide a research
status update of plasmons in tapered grooves, starting with a presentation of
the theory and important features of GSPs and CPPs, and follow with an overview
of the broad range of applications they enable or improve. We cover the
techniques that can fabricate tapered groove structures, in particular
highlighting wafer-scale production methods, and outline the various photon-
and electron-based approaches that can be used to launch and study GSPs and
CPPs. We conclude with a discussion of the challenges that remain for further
developing plasmonic tapered-groove devices, and consider the future directions
offered by this select yet potentially far-reaching topic area.Comment: 32 pages, 34 figure
Nonlinear Performance of BAW Filters Including BST Capacitors
This paper evaluates the nonlinear effects occurring in a bulk acoustic wave (BAW) filter which includes barium strontium titanate (BST) capacitors to cancel the electrostatic capacitance of the BAW resonators. To do that we consider the nonlinear effects on the BAW resonators by use of a nonlinear Mason model. This model accounts for the distributed nonlinearities inherent in the materials forming the resonator. The whole filter is then implemented by properly connecting the resonators in a balanced configuration. Additional BST capacitors are included in the filter topology. The nonlinear behavior of the BST capacitors is also accounted in the overall nonlinear assessment. The whole circuit is then used to evaluate its nonlinear behavior. It is found that the nonlinear contribution arising from the ferroelectric nature of the BST capacitors makes it impractical to fulfill the linearity requirements of commercial filters
Comparison of three control theories for single-phase active power filters
Active Power Filters have been developed in last
years, mostly for three-phase systems applications. The use of Shunt Active Power Filters on single-phase facilities brings many benefits for the electrical grid, since these installations have non linear loads and power factor problems, and in their
total, they are responsible by a significant portion of the total
electric energy consumption. Harmonics and reactive power
consumed by single-phase installations cause additional power
losses on the electrical grid. So, mitigate harmonics at the origin
helps reducing these extra losses and other problems caused by
the harmonics. The drawback of this solution is the necessity of
a large number of Active Power Filters distributed by the
generality of the single-phase facilities. So, it becomes necessary
a simple and low cost Shunt Active Power Filter to install on
single-phase installations. This paper presents three simple
control theories to use on single-phase Shunt Active Power Filters. Simulation and experimental results comparing the three different control theories are presented and analyzed.Fundação para a Ciência e a Tecnologia (FCT
Jones-matrix Formalism as a Representation of the Lorentz Group
It is shown that the two-by-two Jones-matrix formalism for polarization
optics is a six-parameter two-by-two representation of the Lorentz group. The
attenuation and phase-shift filters are represented respectively by the
three-parameter rotation subgroup and the three-parameter Lorentz group for two
spatial and one time dimensions. It is noted that the Lorentz group has another
three-parameter subgroup which is like the two-dimensional Euclidean group.
Possible optical filters having this Euclidean symmetry are discussed in
detail. It is shown also that the Jones-matrix formalism can be extended to
some of the non-orthogonal polarization coordinate systems within the framework
of the Lorentz-group representation.Comment: RevTeX, 27 pages, no figures, to be published in J. Opt. Soc. Am.
- …
