489,493 research outputs found

    Variability of fundamental constants

    Full text link
    If the fine structure constant is not really constant, is this due to a variation of ee, ℏ\hbar, or cc? It is argued that the only reasonable conclusion is a variable speed of light.Comment: preliminary draft, comments welcom

    Lorentz group theory and polarization of the light

    Full text link
    Some facts of the theory of the Lorentz group are specified for looking at the problems of light polarization optics in the frames of vector Stokes-Mueller and spinor Jones formalism. In view of great differences between properties of isotropic and time-like vectors in Special Relativity we should expect principal differences in describing completely polarized and partly polarized light. In particular, substantial differences are revealed when turning to spinor techniques in the context of the polarized light. Because Jones complex formalism has close relation to spinor objects of the Lorentz group, within the field of the light polarization we could have physical realizations on the optical desk of some subtle topological distinctions between orthogonal L_{+}^{\uparrow} =SO_{0}(3.1) and spinor SL(2.C) groups. These topological differences of the groups find their corollaries in the problem of the so-called spinor structure of physical space-time, some new points are considered.Comment: 17 pages. Talk given at 16 International Seminar: NCPS, May 19-22, 2009, Minsk. A shorter vertion published as a journal pape

    Einstein and Tagore, Newton and Blake, Everett and Bohr: the dual nature of reality

    Get PDF
    There are two broad opposing classes of attitudes to reality (realist vs idealist, material vs mental) with corresponding attitudes to knowledge (objective vs subjective, scientific vs romantic). I argue that these attitudes can be compatible, and that quantum theory requires us to adopt both of them

    Doubly Special Relativity with a minimum speed and the Uncertainty Principle

    Full text link
    The present work aims to search for an implementation of a new symmetry in the space-time by introducing the idea of an invariant minimum speed scale (VV). Such a lowest limit VV, being unattainable by the particles, represents a fundamental and preferred reference frame connected to a universal background field (a vacuum energy) that breaks Lorentz symmetry. So there emerges a new principle of symmetry in the space-time at the subatomic level for very low energies close to the background frame (v≈Vv\approx V), providing a fundamental understanding for the uncertainty principle, i.e., the uncertainty relations should emerge from the space-time with an invariant minimum speed.Comment: 10 pages, 8 figures, Correlated paper in: http://www.worldscientific.com/worldscinet/ijmpd?journalTabs=read. arXiv admin note: substantial text overlap with arXiv:physics/0702095, arXiv:0705.4315, arXiv:0709.1727, arXiv:0805.120

    On the spherically symmetric Einstein-Yang-Mills-Higgs equations in Bondi coordinates

    Full text link
    We revisit and generalize, to the Einstein-Yang-Mills-Higgs system, previous results of D. Christodoulou and D. Chae concerning global solutions for the Einstein-scalar field and the Einstein-Maxwell-Higgs equations. The novelty of the present work is twofold. For one thing the assumption on the self-interaction potential is improved. For another thing explanation is furnished why the solutions obtained here and those proved by Chae for the Einstein-Maxwell-Higgs decay more slowly than those established by Christodoulou in the case of self-gravitating scalar fields. Actually this latter phenomenon stems from the non-vanishing local charge in Einstein-Maxwell-Higgs and Einstein-Yang-Mills-Higgs models.Comment: 25 page
    • 

    corecore