11 research outputs found

    Applications of a new separator theorem for string graphs

    Get PDF
    An intersection graph of curves in the plane is called a string graph. Matousek almost completely settled a conjecture of the authors by showing that every string graph of m edges admits a vertex separator of size O(\sqrt{m}\log m). In the present note, this bound is combined with a result of the authors, according to which every dense string graph contains a large complete balanced bipartite graph. Three applications are given concerning string graphs G with n vertices: (i) if K_t is not a subgraph of G for some t, then the chromatic number of G is at most (\log n)^{O(\log t)}; (ii) if K_{t,t} is not a subgraph of G, then G has at most t(\log t)^{O(1)}n edges,; and (iii) a lopsided Ramsey-type result, which shows that the Erdos-Hajnal conjecture almost holds for string graphs.Comment: 7 page

    Modularity of minor-free graphs

    Full text link
    We prove that a class of graphs with an excluded minor and with the maximum degree sublinear in the number of edges is maximally modular, that is, modularity tends to 1 as the number of edges tends to infinity.Comment: 7 pages, 1 figur

    Many Sparse Cuts via Higher Eigenvalues

    Full text link
    Cheeger's fundamental inequality states that any edge-weighted graph has a vertex subset SS such that its expansion (a.k.a. conductance) is bounded as follows: \phi(S) \defeq \frac{w(S,\bar{S})}{\min \set{w(S), w(\bar{S})}} \leq 2\sqrt{\lambda_2} where ww is the total edge weight of a subset or a cut and λ2\lambda_2 is the second smallest eigenvalue of the normalized Laplacian of the graph. Here we prove the following natural generalization: for any integer k∈[n]k \in [n], there exist ckck disjoint subsets S1,...,SckS_1, ..., S_{ck}, such that max⁥iϕ(Si)≀Cλklog⁥k \max_i \phi(S_i) \leq C \sqrt{\lambda_{k} \log k} where λi\lambda_i is the ithi^{th} smallest eigenvalue of the normalized Laplacian and c0c0 are suitable absolute constants. Our proof is via a polynomial-time algorithm to find such subsets, consisting of a spectral projection and a randomized rounding. As a consequence, we get the same upper bound for the small set expansion problem, namely for any kk, there is a subset SS whose weight is at most a \bigO(1/k) fraction of the total weight and ϕ(S)≀Cλklog⁥k\phi(S) \le C \sqrt{\lambda_k \log k}. Both results are the best possible up to constant factors. The underlying algorithmic problem, namely finding kk subsets such that the maximum expansion is minimized, besides extending sparse cuts to more than one subset, appears to be a natural clustering problem in its own right

    Improved Cheeger's Inequality: Analysis of Spectral Partitioning Algorithms through Higher Order Spectral Gap

    Get PDF
    Let \phi(G) be the minimum conductance of an undirected graph G, and let 0=\lambda_1 <= \lambda_2 <=... <= \lambda_n <= 2 be the eigenvalues of the normalized Laplacian matrix of G. We prove that for any graph G and any k >= 2, \phi(G) = O(k) \lambda_2 / \sqrt{\lambda_k}, and this performance guarantee is achieved by the spectral partitioning algorithm. This improves Cheeger's inequality, and the bound is optimal up to a constant factor for any k. Our result shows that the spectral partitioning algorithm is a constant factor approximation algorithm for finding a sparse cut if \lambda_k$ is a constant for some constant k. This provides some theoretical justification to its empirical performance in image segmentation and clustering problems. We extend the analysis to other graph partitioning problems, including multi-way partition, balanced separator, and maximum cut

    Structured recursive separator decompositions for planar graphs in linear time (Extended Abstract)

    Get PDF
    Given a triangulated planar graph G on n vertices and an integer r &lt; n, an r-division of G with few holes is a decomposition of G into O(n/r) regions of size at most r such that each region contains at most a constant number of faces that are not faces of G (also called holes), and such that, for each region, the total number of vertices on these faces is O( √ r). We provide an algorithm for computing r-divisions with few holes in linear time. In fact, our algorithm computes a structure, called decomposition tree, which represents a recursive decomposition of G that includes r-divisions for essentially all values of r. In particular, given an exponentially increasing sequence r = (r1, r2, ...), our algorithm can produce a recursive r-division with few holes in linear time. r-divisions with few holes have been used in efficient algorithms to compute shortest paths, minimum cuts, and maximum flows. Our linear-time algorithm improves upon the decomposition algorithm used in the state-of-the-art algorithm for minimum st-cut (Italiano, Nussbaum, Sankowski, and Wulff-Nilsen, STOC 2011), removing one of the bottlenecks in the overall running time of their algorithm (analogously for minimum cut in planar and bounded-genus graphs)
    corecore